Enhancing Functional Safety Validation: Addressing Challenges and Best Practices (ISO26262)
Functional safety is a vital discipline in engineering, focusing on ensuring system safety in areas impacting human safety or the environment.

Enhancing ISO26262 Functional Safety Validation: Challenges and Best Practices

Introduction to functional safety

Functional safety is a vital discipline in engineering, focusing on ensuring system safety in areas impacting human safety or the environment. It aims to prevent or minimize the consequences of system failures, faults, or errors leading to hazardous situations.

The complexity of modern systems in critical industries such as aerospace, automotive, and medical devices necessitate rigorous functional safety verification. This verification process ensures correct implementation of safety measures and addresses potential hazards before deployment. It involves comprehensive testing, analysis, and simulation to validate system behavior under normal and abnormal conditions.

Examples highlight the significance of functional safety across industries. For instance, in automotive applications, airbag systems must reliably deploy to protect occupants during accidents. Similarly, medical devices like pacemakers require continuous and reliable operation to avoid life-threatening consequences for patients.

In automotive engineering, functional safety is paramount due to the interconnected nature of vehicle systems. Electronic control units (ECUs) manage critical functions like braking and steering, necessitating seamless system interaction for safety and performance. Compliance with stringent safety standards, such as ISO 26262, is not only a regulatory requirement but also crucial for protecting lives on the road.

The ISO26262 standard provides a guideline to assess severity of all situations and provides a safety rating system called Automotive Safety Integrity Level (ASIL).

ISO 26262
Fig 2: ISO 26262 Fault Detection Metrics

Focusing on the ASIL-B standard, the system should be capable of identifying 90% of single point faults occurring in the design using all the SMs (safety mechanism) defined for that design.

Fault injection

Fault injection is a technique used in functional safety verification to assess how a system responds to various faults or errors intentionally introduced into its operation. By simulating faults, engineers can evaluate the system’s robustness and its ability to detect, diagnose, and recover from potential failures.

ISO26262 function safety standard verification requires extensive fault injection campaigns and complex manual analysis.

Faults can be broadly classified into Permanent and Transient. A permanent fault is a type of fault that persists until it is actively corrected or repaired. It occurs due to inherent functional errors in the design, component degradation, manufacturing defect, physical damage, electromagnetic interference, etc. A transient fault is a temporary deviation from normal system behavior that occurs due to external factors or temporary conditions. Unlike permanent faults that persist until corrected, transient faults typically resolve on their own once the influencing factor diminishes. It occurred due to voltage spikes, electrostatic discharge, environment factors, radiation or cosmic rays, interference from nearby equipments, etc.

Permanent fault can be simulated by forcing 0 or 1 on the node, classified as stuck at 0 and stuck at 1 fault. Gate level netlist is used for fault injection of permanent fault model. In transient fault, the signal is inverted, and the modified value remains for a small time. This is classified into two types-
Single event upset (SEU): Faulty value remains until new value assigned
Single event transient (SET): Hold the value for a specific period of time

FCM flow

The Fault Campaign Manager (FCM) oversees the entirety of the fault injection campaign, managing every step from planning to execution. It relies on critical engines such as the Xcelium Fault Simulator (XFS) and the Jasper Functional Safety Verification App (FSV) to create a robust and thorough functional safety solution. These tools work together seamlessly within the FCM framework, allowing for comprehensive fault injection testing, data analysis, and reporting. 

The FCM ensures that fault scenarios are configured accurately, simulations are run effectively, and results are analysed comprehensively to assess system resilience, fault tolerance, and safety mechanisms. By integrating these core engines, the FCM streamlines the end-to-end flow of functional safety verification, enabling engineers to validate safety requirements and enhance system reliability efficiently. The steps for FCM flow are given below:

Fault Injection
Fig 4: Fault Injection Campaign

PREP: Create campaign directory structure
O_EXEC, O_RANK: Execute all test cases from users list and rank the test cases for fault injection (FI) (based on toggle coverage percentage contribution by each test cases).
G_ELAB: Elaborate the design with fault information, create xcelium snapshot and fault database
FST: Fault space reduction using testability analysis and cone of influence (COI)
FSV_TC: Fault pruning with constant analysis
F_EXEC, F_EXEC_C: Simulate each fault with selected rank test cases using concurrent and serial engines
F_RANK: Generate final report with fault details

Challenges and Solutions

There are lot of challenges while using FCM flow for bigger IPs (large fault lists). Challenges and effective solutions are provided below:

  • Addressing runtime issues
  • Optimizing fault list
  • Test case prioritization
  • Utilizing engineering judgment
  • Understanding tools limitation
  • Selection of window of opportunity

 

Addressing runtime issues
Runtime issues can be classified into two:

  • Huge runtime for complex designs (large fault list)
  • Handling non simulatable (NS) fault

 

Huge runtime for complex designs

Designs containing fewer than 50,000 faults can complete the campaign relatively quickly. 

However, designs exceeding 50,000 faults, such as hardware accelerator designs with over 1 million faults, will require more time. It is possible to reduce runtime by configuring parameters appropriately.

Grouping is a crucial parameter in fault injection campaigns. Consider a scenario with 5000 faults and 10 test cases, resulting in 50000 fault simulations (5000 faults * 10 test cases). Executing such a large number of simulations can significantly prolong the campaign duration. Grouping faults offers an effective solution to this challenge.

For instance, if we group 1000 faults per simulation, only 5 simulations will be necessary for each test case, reducing the total simulations to 50 for the entire fault injection campaign. This grouping strategy significantly decreases the campaign’s runtime. Moreover, if there are sufficient licenses, all 50 simulations can run concurrently, further reducing the overall runtime.

However, it is essential to note a potential drawback of grouping: simulating 1000 faults in a single simulation may take longer than simulating 1 fault per simulation. This trade-off between the number of faults per simulation and simulation runtime should be carefully considered based on the specific requirements and constraints of the fault injection testing process.

We need to determine the optimal value for fault grouping based on the number of faults, test cases, and available fault simulator licenses. Conducting experiments to find the most effective grouping value is crucial. Below are the details of the experiments conducted and the findings regarding the best value for fault grouping.

Fault grouping
Fig 5: Fault Grouping Experiment

Total Faults: 100000
Total test cases: 50

Exp1: FS_MAX_FAULTS_PER_GROUP = 200
FS_SERIAL_MAX_FAULTS_PER_GROUP = 1
Exp2: FS_MAX_FAULTS_PER_GROUP = 10000
FS_SERIAL_MAX_FAULTS_PER_GROUP = 40
Exp3: FS_MAX_FAULTS_PER_GROUP = 2000
FS_SERIAL_MAX_FAULTS_PER_GROUP = 40

Handling non simulatable fault

A limitation exists with the concurrent engine regarding faults labelled as non-simulatable, particularly when these faults propagate through RTL constructs (e.g., behavioural memory code). These non-simulatable (NS) faults are executed by the serial engine, which can extend the runtime.

To mitigate this issue and improve runtime, reducing the number of NS faults is essential. One approach is to define a fault boundary, which delineates the extent of fault propagation. For example, when analysing a specific IP (Intellectual Property), it is beneficial to align the fault boundary with the IPs boundaries or the hierarchy where checker strobes and functional strobes are located. This strategy effectively reduces non-simulatable faults, thereby decreasing the need for serial runs and optimizing overall runtime.

Optimizing fault list

After the simulation phase, numerous undangerous undetected (UU) faults may remain, which are not observed in functional and checker strobes. Generally, faults become UU due to two reasons: either there are no test cases to exercise the fault path, or the fault itself is considered safe. To streamline fault simulation and reduce total faults, identifying safe faults is crucial. This involves checking design constraints and coverage waivers to ensure that these faults do not propagate to functional strobes.

Additionally, in fault injection campaigns, some blocks may be instantiated multiple times. It’s essential to focus on one instance and extrapolate faults from other instances since fault analysis and propagation paths remain the same for all instances.

To manage exclusions or convert UU faults to safe faults effectively, we utilize the JasperGold Functional Safety Verification App (FSV). FSV classifies safe faults and significantly reduces runtime. Within the Fault Campaign Manager (FCM), the FSV phase involves structural analysis via functional safety tool, which includes:

Out of COI analysis: Removes faults on diagnostic logic based on COI.
Activatability analysis: Aids in removing tied-off logic.
Propagability analysis: Waives off faults that cannot propagate to functional strobes based on user-defined assumptions.
Examples illustrating these analyses are provided below to demonstrate their efficacy in optimizing fault simulation and improving overall fault management in functional safety verification processes.
1. Since we are not covering design for testability (DFT) logic for fault injection (FI), we need to include the following statement in the FSV tickle file:
assume -env {DUT_WRAPPER … DFT_sen = = 1’b0}
In this statement, DFT_sen is treated as “0,” and any sa0 on this signal and the signals driven by DFT_sen will be considered safe faults.
2. To mask untargeted logic, you can utilize a barrier:
check_fsv -barrier -add {hierarchy}
This command will exclude faults on the specified node and its inputs.

Test case prioritization

The lack of stimulus can result in numerous UU faults in the Fault Campaign Manager (FCM) campaign. Before initiating fault injection (FI) activities, it’s crucial to ensure that the available test cases provide full coverage of the fault target, especially in terms of toggle coverage. Often, there are many redundant test cases that increase the number of fault runs and consequently, the runtime.

To address this issue, we need to create a targeted set of test cases that offer maximum coverage, thereby reducing the number of fault runs. The FCM flow includes an optional phase for test case selection, where tests with higher coverage are chosen for the fault injection campaign. The test case ranking phase prioritizes test cases based on their fault coverage, from highest to lowest. Additionally, the test drop feature, when used in conjunction, can significantly enhance efficiency and reduce runtimes.

Utilizing engineering judgment

After applying all assumptions and barriers, if fault coverage remains insufficient, manual classification of faults with proper analysis and justification is necessary. Engineering Judgment (EJ) involves a set of rules (Unobserved Safeness Factor and Unobserved Detection Factor) for classifying unobserved faults as safe or detected. Justification is based on functional coverage (FC) and diagnostic coverage (DC).

Engineering Judgement
Figure 6: Engineering Judgment

UOSF (Unobserved Safeness Factor) and UODF (Unobserved Detection Factor) are calculated based on:

Functional Coverage (FC): Indicates the effectiveness of workload for branch, toggle, or expression coverage. Higher FC implies well-simulated design, leading to a high UOSF (Unobserved Safeness Factor). Depending on the type of safety mechanism, high FC may also indicate that unobserved faults could potentially be detected (high UODF).
The calculation strategy for UOSF and UODF is as follows:

Fig 7: UOSF Strategy
UODF Strategy
Fig 8: UODF Strategy

Measured dangerous = dangerous undetected (DU) + dangerous detected (DD)

In summary, EJ involves evaluating unobserved faults using UOSF and UODF, with justification derived from functional and diagnostic coverage. Higher FC contributes to a higher UOSF and potentially a higher UODF, indicating the safety and detectability of unobserved faults by safety mechanisms.

Selection of window of opportunity

Transient analysis is used to examine faults that exist for a short period, known as transient faults. The time window during which faults are activated for propagation is termed the window of opportunity (WoO). Analysing the WoO for each node is critical yet complex, requiring a thorough review of waveforms and a deep understanding of data flow.

Sync events can aid in this process by serving as inputs to the Xcelium Fault Set Generator (XFSG) tool. By using clock signals as sync events, faults are injected immediately after the positive edge of the sync event signal. Identifying clocks in the design and utilizing them as sync events is essential since all flops in the design are activated based on different clock inputs. The XFSG tool takes a timing configuration file and waveform data (.shm file) as inputs to generate the fault list, considering the sync event timings.

For the initial fault injection (FI) run, starting time (after reset de assertion) and end time, along with the time interval between fault injections, can be specified. The fault generator injects the same fault in different time windows based on these parameters. Analysing the campaign output provides insights into which time windows activate or deactivate the most faults. This data aids in further analysis and minimizes the number of UU faults. Subsequent analysis focuses on identifying and understanding the WoO for the remaining UU faults.

Understanding tools limitation

The sync event flow only supports clock inputs; other signals cannot be used as sync events.
The serial fault engine considers all faults for the campaign, whereas it should normally only consider NS (Non-Simulatable) faults. This results in longer runtimes due to a higher number of fault simulations.

The FCM flow misbehaves when adding test cases supported by analog models, leading to fault hierarchy being skipped.

Summary and Future enhancement

Completing fault injection and achieving comprehensive diagnostic coverage on complex IPs within tight timelines presents considerable challenges. Our experiments and observations detailed above are aimed at overcoming these hurdles by optimizing runtimes and simplifying the analysis process.

The solutions discussed are not only applicable to the specific scenarios outlined but can be extrapolated to address similar challenges encountered with any IP. By implementing the strategies outlined, analysts can navigate through the complexities of fault injection and diagnostic coverage with greater ease and efficiency.

Looking ahead, there is potential for further enhancements in fault simulator tools. Developing a refined workflow that specifically targets UU faults for future campaigns, while excluding DD, DU, and safe faults, holds promise in reducing the overall fault set, streamlining runtimes, and facilitating more straightforward analysis processes.

Moreover, emphasizing the enhancement of FSV capabilities, especially in terms of visualizing stimulus to cover corner cases, is essential for ensuring a thorough fault analysis and achieving comprehensive diagnostic coverage across various IP designs.

In conclusion, by leveraging the insights and strategies discussed in this blog, the problem statement can be simplified, ultimately leading to more robust and reliable IP designs.

References

  1. Fault Campaign Manager User Guide
  2. Xcelium Fault Simulator User Guide
  3. ISO 26262-1:2018 – Road vehicles — Functional safety
  4. Felipe Augusto da Silva, Ahmet Cagri Bagbaba, Said Hamdioui, Christian Sauer, 2019, October, Efficient Methodology for ISO26262 Functional Safety Verification, 2019 IEEE 25th international symposiumoon On-Line testing and Robust system designing
Scroll to Top

Human Pose Detection & Classification

Some Buildings in a city

Features:

  • Suitable for real time detection on edge devices
  • Detects human pose / key points and recognizes movement / behavior
  • Light weight deep learning models with good accuracy and performance

Target Markets:

  • Patient Monitoring in Hospitals
  • Surveillance
  • Sports/Exercise Pose Estimation
  • Retail Analytics

OCR / Pattern Recognition

Some Buildings in a city

Use cases :

  • Analog dial reading
  • Digital meter reading
  • Label recognition
  • Document OCR

Highlights :

  • Configurable for text or pattern recognition
  • Simultaneous Analog and Digital Dial reading
  • Lightweight implementation

Behavior Monitoring

Some Buildings in a city

Use cases :

  • Fall Detection
  • Social Distancing

Highlights :

  • Can define region of interest to monitor
  • Multi-subject monitoring
  • Multi-camera monitoring
  • Alarm triggers

Attire & PPE Detection

Some Buildings in a city

Use cases :

  • PPE Checks
  • Disallowed attire checks

Use cases :

  • Non-intrusive adherence checks
  • Customizable attire checks
  • Post-deployment trainable

 

Request for Video





    Real Time Color Detection​

    Use cases :

    • Machine vision applications such as color sorter or food defect detection

    Highlights :

    • Color detection algorithm with real time performance
    • Detects as close to human vison as possible including color shade discrimination
    • GPGPU based algorithm on NVIDIA CUDA and Snapdragon Adreno GPU
    • Extremely low latency (a few 10s of milliseconds) for detection
    • Portable onto different hardware platforms

    Missing Artifact Detection

    Use cases :

    • Detection of missing components during various stages of manufacturing of industrial parts
    • Examples include : missing nuts and bolts, missing ridges, missing grooves on plastic and metal blocks

    Highlights :

    • Custom neural network and algorithms to achieve high accuracy and inference speed
    • Single-pass detection of many categories of missing artifacts
    • In-field trainable neural networks with dynamic addition of new artifact categories
    • Implementation using low cost cameras and not expensive machine-vision cameras
    • Learning via the use of minimal training sets
    • Options to implement the neural network on GPU or CPU based systems

    Real Time Manufacturing Line Inspection

    Use cases :

    • Detection of defects on the surface of manufactured goods (metal, plastic, glass, food, etc.)
    • Can be integrated into the overall automated QA infrastructure on an assembly line.

    Highlights :

    • Custom neural network and algorithms to achieve high accuracy and inference speed
    • Use of consumer or industrial grade cameras
    • Requires only a few hundred images during the training phase
    • Supports incremental training of the neural network with data augmentation
    • Allows implementation on low cost GPU or CPU based platforms

    Ground Based Infrastructure analytics

    Some Buildings in a city

    Use cases :

    • Rail tracks (public transport, mining, etc.)
    • Highways
    • Tunnels

    Highlights :

    • Analysis of video and images from 2D & 3D RGB camera sensors
    • Multi sensor support (X-ray, thermal, radar, etc.)
    • Detection of anomalies in peripheral areas of core infrastructure (Ex: vegetation or stones near rail tracks)

    Aerial Analytics

    Use cases :

    • Rail track defect detection
    • Tower defect detection: Structural analysis of Power
      transmission towers
    • infrastructure mapping

    Highlights :

    • Defect detection from a distance
    • Non-intrusive
    • Automatic video capture with perfectly centered ROI
    • No manual intervention is required by a pilot for
      camera positioning

    SANJAY JAYAKUMAR

    Co-founder & CEO

     

    Founder and Managing director of Ignitarium, Sanjay has been responsible for defining Ignitarium’s core values, which encompass the organisation’s approach towards clients, partners, and all internal stakeholders, and in establishing an innovation and value-driven organisational culture.

     

    Prior to founding Ignitarium in 2012, Sanjay spent the initial 22 years of his career with the VLSI and Systems Business unit at Wipro Technologies. In his formative years, Sanjay worked in diverse engineering roles in Electronic hardware design, ASIC design, and custom library development. Sanjay later handled a flagship – multi-million dollar, 600-engineer strong – Semiconductor & Embedded account owning complete Delivery and Business responsibility.

     

    Sanjay graduated in Electronics and Communication Engineering from College of Engineering, Trivandrum, and has a Postgraduate degree in Microelectronics from BITS Pilani.

     

    Request Free Demo




      RAMESH EMANI Board Member

      RAMESH EMANI

      Board Member

      Ramesh was the Founder and CEO of Insta Health Solutions, a software products company focused on providing complete hospital and clinic management solutions for hospitals and clinics in India, the Middle East, Southeast Asia, and Africa. He raised Series A funds from Inventus Capital and then subsequently sold the company to Practo Technologies, India. Post-sale, he held the role of SVP and Head of the Insta BU for 4 years. He has now retired from full-time employment and is working as a consultant and board member.

       

      Prior to Insta, Ramesh had a 25-year-long career at Wipro Technologies where he was the President of the $1B Telecom and Product Engineering Solutions business heading a team of 19,000 people with a truly global operations footprint. Among his other key roles at Wipro, he was a member of Wipro's Corporate Executive Council and was Chief Technology Officer.

       

      Ramesh is also an Independent Board Member of eMIDs Technologies, a $100M IT services company focused on the healthcare vertical with market presence in the US and India.

       

      Ramesh holds an M-Tech in Computer Science from IIT-Kanpur.

      ​Manoj Thandassery

      VP – Sales & Business Development

      Manoj Thandassery is responsible for the India business at Ignitarium. He has over 20 years of leadership and business experience in various industries including the IT and Product Engineering industry. He has held various responsibilities including Geo head at Sasken China, Portfolio head at Wipro USA, and India & APAC Director of Sales at Emeritus. He has led large multi-country teams of up to 350 employees. Manoj was also an entrepreneur and has successfully launched and scaled, via multiple VC-led investment rounds, an Edtech business in the K12 space that was subsequently sold to a global Edtech giant.
      An XLRI alumnus, Manoj divides his time between Pune and Bangalore.

       

      MALAVIKA GARIMELLA​

      General Manager - Marketing

      A professional with a 14-year track record in technology marketing, Malavika heads marketing in Ignitarium. Responsible for all branding, positioning and promotional initiatives in the company, she has collaborated with technical and business teams to further strengthen Ignitarium's positioning as a key E R&D services player in the ecosystem.

      Prior to Ignitarium, Malavika has worked in with multiple global tech startups and IT consulting companies as a marketing consultant. Earlier, she headed marketing for the Semiconductor & Systems BU at Wipro Technologies and worked at IBM in their application software division.

      Malavika completed her MBA in Marketing from SCMHRD, Pune, and holds a B.E. degree in Telecommunications from RVCE, Bengaluru.

       

      PRADEEP KUMAR LAKSHMANAN

      VP - Operations

      Pradeep comes with an overall experience of 26 years across IT services and Academia. In his previous role at Virtusa, he played the role of Delivery Leader for the Middle East geography. He has handled complex delivery projects including the transition of large engagements, account management, and setting up new delivery centers.

      Pradeep graduated in Industrial Engineering and Management, went on to secure an MBA from CUSAT, and cleared UGN Net in Management. He also had teaching stints at his alma mater, CUSAT, and other management institutes like DCSMAT. A certified P3O (Portfolio, Program & Project Management) from the Office of Government Commerce, UK, Pradeep has been recognized for key contributions in the Management domain, at his previous organizations, Wipro & Virtusa.

      In his role as the Head of Operations at Ignitarium, Pradeep leads and manages operational functions such as Resource Management, Procurement, Facilities, IT Infrastructure, and Program Management office.

       

      SONA MATHEW Director – Human Resources

      SONA MATHEW

      AVP – Human Resources

      Sona heads Human Resource functions - Employee Engagement, HR Operations and Learning & Development – at Ignitarium. Her expertise include deep and broad experience in strategic people initiatives, performance management, talent transformation, talent acquisition, people engagement & compliance in the Information Technology & Services industry.

       

      Prior to Ignitarium, Sona has had held diverse HR responsibilities at Litmus7, Cognizant and Wipro.

       

      Sona graduated in Commerce from St. Xaviers College and did her MBA in HR from PSG College of Technology.

       

      ASHWIN RAMACHANDRAN

      Vice President - Sales

      As VP of Sales, Ashwin is responsible for Ignitarium’s go-to-market strategy, business, client relationships, and customer success in the Americas. He brings in over a couple of decades of experience, mainly in the product engineering space with customers from a wide spectrum of industries, especially in the Hi-Tech/semiconductor and telecom verticals.

       

      Ashwin has worked with the likes of Wipro, GlobalLogic, and Mastek, wherein unconventional and creative business models were used to bring in non-linear revenue. He has strategically diversified, de-risked, and grown his portfolios during his sales career.

       

      Ashwin strongly believes in the customer-first approach and works to add value and enhance the experiences of our customers.

       

      AZIF SALY Director – Sales

      AZIF SALY

      Vice President – Sales & Business Development

      Azif is responsible for go-to-market strategy, business development and sales at Ignitarium. Azif has over 14 years of cross-functional experience in the semiconductor product & service spaces and has held senior positions in global client management, strategic account management and business development. An IIM-K alumnus, he has been associated with Wipro, Nokia and Sankalp in the past.

       

      Azif handled key accounts and sales process initiatives at Sankalp Semiconductors. Azif has pursued entrepreneurial interests in the past and was associated with multiple start-ups in various executive roles. His start-up was successful in raising seed funds from Nokia, India. During his tenure at Nokia, he played a key role in driving product evangelism and customer success functions for the multimedia division.

       

      At Wipro, he was involved in customer engagement with global customers in APAC and US.

       

      RAJU KUNNATH Vice President – Enterprise & Mobility

      RAJU KUNNATH

      Distinguished Engineer – Digital

      At Ignitarium, Raju's charter is to architect world class Digital solutions at the confluence of Edge, Cloud and Analytics. Raju has over 25 years of experience in the field of Telecom, Mobility and Cloud. Prior to Ignitarium, he worked at Nokia India Pvt. Ltd. and Sasken Communication Technologies in various leadership positions and was responsible for the delivery of various developer platforms and products.

       

      Raju graduated in Electronics Engineering from Model Engineering College, Cochin and has an Executive Post Graduate Program (EPGP) in Strategy and Finance from IIM Kozhikode.

       

      PRADEEP SUKUMARAN Vice President – Business Strategy & Marketing

      PRADEEP SUKUMARAN

      Vice President - Software Engineering

      Pradeep heads the Software Engineering division, with a charter to build and grow a world-beating delivery team. He is responsible for all the software functions, which includes embedded & automotive software, multimedia, and AI & Digital services

      At Ignitarium, he was previously part of the sales and marketing team with a special focus on generating a sales pipeline for Vision Intelligence products and services, working with worldwide field sales & partner ecosystems in the U.S  Europe, and APAC.

      Prior to joining Ignitarium in 2017, Pradeep was Senior Solutions Architect at Open-Silicon, an ASIC design house. At Open-Silicon, where he spent a good five years, Pradeep was responsible for Front-end, FPGA, and embedded SW business development, marketing & technical sales and also drove the IoT R&D roadmap. Pradeep started his professional career in 2000 at Sasken, where he worked for 11 years, primarily as an embedded multimedia expert, and then went on to lead the Multimedia software IP team.

      Pradeep is a graduate in Electronics & Communication from RVCE, Bangalore.

       

      SUJEET SREENIVASAN Vice President – Embedded

      SUJEET SREENIVASAN

      Vice President – Automotive Technology

       

      Sujeet is responsible for driving innovation in Automotive software, identifying Automotive technology trends and advancements, evaluating their potential impact, and development of solutions to meet the needs of our Automotive customers.

      At Ignitarium, he was previously responsible for the growth and P&L of the Embedded Business unit focusing on Multimedia, Automotive, and Platform software.

      Prior to joining Ignitarium in 2016, Sujeet has had a career spanning more than 16 years at Wipro. During this stint, he has played diverse roles from Solution Architect to Presales Lead covering various domains. His technical expertise lies in the areas of Telecom, Embedded Systems, Wireless, Networking, SoC modeling, and Automotive. He has been honored as a Distinguished Member of the Technical Staff at Wipro and has multiple patents granted in the areas of Networking and IoT Security.

      Sujeet holds a degree in Computer Science from Government Engineering College, Thrissur.

       

      RAJIN RAVIMONY Distinguished Engineer

      RAJIN RAVIMONY

      Distinguished Engineer

       

      At Ignitarium, Rajin plays the role of Distinguished Engineer for complex SoCs and systems. He's an expert in ARM-based designs having architected more than a dozen SoCs and played hands-on design roles in several tens more. His core areas of specialization include security and functional safety architecture (IEC61508 and ISO26262) of automotive systems, RTL implementation of math intensive signal processing blocks as well as design of video processing and related multimedia blocks.

       

      Prior to Ignitarium, Rajin worked at Wipro Technologies for 14 years where he held roles of architect and consultant for several VLSI designs in the automotive and consumer domains.

       

      Rajin holds an MS in Micro-electronics from BITS Pilani.

       

      SIBY ABRAHAM Executive Vice President, Strategy

      SIBY ABRAHAM

      Executive Vice President, Strategy

       

      As EVP, of Strategy at Ignitarium, Siby anchors multiple functions spanning investor community relations, business growth, technology initiatives as well and operational excellence.

       

      Siby has over 31 years of experience in the semiconductor industry. In his last role at Wipro Technologies, he headed the Semiconductor Industry Practice Group where he was responsible for business growth and engineering delivery for all of Wipro’s semiconductor customers. Prior to that, he held a vast array of crucial roles at Wipro including Chief Technologist & Vice President, CTO Office, Global Delivery Head for Product Engineering Services, Business Head of Semiconductor & Consumer Electronics, and Head of Unified Competency Framework. He was instrumental in growing Wipro’s semiconductor business to over $100 million within 5 years and turning around its Consumer Electronics business in less than 2 years. In addition, he was the Engineering Manager for Enthink Inc., a semiconductor IP-focused subsidiary of Wipro. Prior to that, Siby was the Technical Lead for several of the most prestigious system engineering projects executed by Wipro R&D.

       

      Siby has held a host of deeply impactful positions, which included representing Wipro in various World Economic Forum working groups on Industrial IOT and as a member of IEEE’s IOT Steering Committee.

       

      He completed his MTech. in Electrical Engineering (Information and Control) from IIT, Kanpur and his BTech. from NIT, Calicut

       

      SUDIP NANDY

      Board Member

       

      An accomplished leader with over 40 years of experience, Sudip has helped build and grow companies in India, the US and the UK.

      He has held the post of Independent Director and Board Member for several organizations like Redington Limited, Excelra, Artison Agrotech, GeBBS Healthcare Solutions, Liquid Hub Inc. and ResultsCX.

      Most recently, Sudip was a Senior Advisor at ChrysCapital, a private equity firm where he has also been the Managing Director and Operating Partner for IT for the past 5 years. During his tenure, he has been Executive Chairman of California-headquartered Infogain Corporation and the non-Exec Chair on the board of a pioneering electric-2-wheeler company Ampere Vehicles, which is now a brand of Greaves Cotton Ltd.

      Earlier on in his career, Sudip has been the CEO and then Chairman India for Aricent. Prior to that, he had spent 25+ years in Wipro where he has been the Head of US business, Engineering R&D Services, and later the Head of EU Operations.

      Sudip is an active investor in several interesting startups in India and overseas, which mostly use technology for the social good, encompassing hyperlocal, healthcare, rural development, farmer support and e2W ecosystem. He also spends time as a coach and mentor for several CEOs in this role.

       

      SUJEETH JOSEPH Chief Product Officer

      SUJEETH JOSEPH

      Chief Technology Officer

       

      As CTO, Sujeeth is responsible for defining the technology roadmap, driving IP & solution development, and transitioning these technology components into practically deployable product engineering use cases.

       

      With a career spanning over 30+ years, Sujeeth Joseph is a semiconductor industry veteran in the SoC, System and Product architecture space. At SanDisk India, he was Director of Architecture for the USD $2B Removable Products Group. Simultaneously, he also headed the SanDisk India Patenting function, the Retail Competitive Analysis Group and drove academic research programs with premier Indian academic Institutes. Prior to SanDisk, he was Chief Architect of the Semiconductor & Systems BU (SnS) of Wipro Technologies. Over a 19-year career at Wipro, he has played hands-on and leadership roles across all phases of the ASIC and System design flow.

       

      He graduated in Electronics Engineering from Bombay University in 1991.

       

      SUJITH MATHEW IYPE Co-founder & CTO

      SUJITH MATHEW IYPE

      Co-founder & COO

       

      As Ignitarium's Co-founder and COO, Sujith is responsible for driving the operational efficiency and streamlining process across the organization. He is also responsible for the growth and P&L of the Semiconductor Business Unit.

       

      Apart from establishing a compelling story in VLSI, Sujith was responsible for Ignitarium's foray into nascent technology areas like AI, ML, Computer Vision, and IoT, nurturing them in our R&D Lab - "The Crucible".

       

      Prior to founding Ignitarium, Sujith played the role of a VLSI architect at Wipro Technologies for 13 years. In true hands-on mode, he has built ASICs and FPGAs for the Multimedia, Telecommunication, and Healthcare domains and has provided technical leadership for many flagship projects executed by Wipro.

       

      Sujith graduated from NIT - Calicut in the year 2000 in Electronics and Communications Engineering and thereafter he has successfully completed a one-year executive program in Business Management from IIM Calcutta.

       

      RAMESH SHANMUGHAM Co-founder & COO

      RAMESH SHANMUGHAM

      Co-founder & CRO

      As Co-founder and Chief Revenue Officer of Ignitarium, Ramesh has been responsible for global business and marketing as well as building trusted customer relationships upholding the company's core values.

      Ramesh has over 25 years of experience in the Semiconductor Industry covering all aspects of IC design. Prior to Ignitarium, Ramesh was a key member of the senior management team of the semiconductor division at Wipro Technologies. Ramesh has played key roles in Semiconductor Delivery and Pre-sales at a global level.

      Ramesh graduated in Electronics Engineering from Model Engineering College, Cochin, and has a Postgraduate degree in Microelectronics from BITS Pilani.