AI Model optimizing featured photo
In this article we explore the advantages of making use of the native APIs and runtime engine of OpenVINO to maximize the performance and efficiency of DNN model inference.

AI Model optimisation using OpenVINO

1. Introduction

In this article we explore the advantages of making use of the native APIs and runtime engine of OpenVINO to maximize the performance and efficiency of DNN model inference. The exploration was conducted on Ignitarium’s proprietary anomaly detection platform, TYQ-i™, using our custom models targeting the detection of defects on telecom towers.

1.1 Brief summary of OpenVINO

OpenVINO (Open Visual Inference and Neural Network Optimization) is a software toolkit developed by Intel Corporation that enables the creation and deployment of Deep Learning applications. The main functionality of this toolkit is that it can be used to customize the inference architecture and deploy it specifically on Intel hardware-based platforms.

Fig 1. OpenVINO high level workflow Source

OpenVINO has an open-source support community and offers multiple pre-trained and deployable models for quick inference. It allows the optimization of DNN models, streamlining and efficient processing through the integration of various tools.

Benefits of using OpenVINO:
* Performance acceleration and model customization
* Optimization of models from various frameworks like TensorFlow, PyTorch etc.
* It can perform traditional computer vision tasks as well.

Limitations:
* OpenVINO cannot run non vision based machine learning algorithms.

2. TYQ-i SaaS platform overview

We run the OpenVINO experiments on the SaaS version of our TYQ-i Platform targeting an Intel TigerLake-UP3-based compute box. The TYQ-i platform was conceptualized to provide various AI services to end users using edge or cloud configurations. At a very high level, the platform has 3 main components:

2.1. Front end

The Front end enables the user to upload input data as either video or frames which will be consumed and processed by the data inference pipeline. The user can configure the tasks needed to be performed during the data inference.

2.2. Orchestrator-service

The Orchestrator-service implements Kafka consumers and producers for communication between front end and inference nodes. It is an entity which manages the complete lifecycle of the inference execution. The components of the Orchestrator are:

  • Kafka consumer to input frames
  • Kafka producer to publish the output frames
  • Workflow to orchestrate the sequence of execution of nodes

Each TYQ-i project has a well-defined workflow. The workflow obeys a parent child relationship and controls the execution sequence of all the nodes activated for the specific project. The orchestrator generates a Directed Acyclic Graph (DAG) workflow for any project using this execution flow.

2.3. Model-Platform

The primary functionality of the Model-platform is to deliver the relevant input files to the various nodes via a well-defined pipeline. The platform makes use of Celery workers to execute the defined tasks. The workers will fetch input data from the storage (Redis) and executes the task (Node). After the task is complete, the results are then written back to Redis, subsequent tasks are executed, and the results are returned.

Fig 2. TYQ-i Project Design

3. Example project

A sample application (Tele-tower) from the TYQ-i library was used for this specific OpenVINO-based optimisation exercise. The application uses a set of platform components to ingest a video, perform pre-processing, detect a tele-tower, identify tower joints and uniquely track and detect missing bolts on the joints.

3.1 Process description

The input feed is a video encompassing the whole tower; the field-of-view covers the entire structure starting from the top of the tower and ends at the base. It contains multiple frames with overlapping areas between the successive images. The TYQ-i project (application) is designed to detect the required objects and uniquely track them. The redundant detections are discarded later.

After the input frames are uploaded to the data pipeline, the TYQ-i platform will execute all the project nodes and the output is displayed.

Fig 3. Simplified Inference sequence

The above flow diagram represents the inference workflow. During inference, the detections are obtained in a sequential manner as defined in the diagram. The entire process workflow follows the path defined by the user during project configuration. After all the missing bolts (towerhole) are identified in the input image, they are then tracked through the video to make sure that the redundant detections are eliminated and only the unique detections are recorded.

3.2 Tracker module

When the tracker is enabled, the results obtained after the input image is processed will be run through the tracker module.  This module will assign unique Ids to each missing bolt detected and these Ids are stored. If a detection occurs on consecutive frames, and the number of occurrences exceeds a pre-determined threshold, the detection is regarded as unique and then recorded.

However, if the specific use case does not require inter-frame tracking, a Non-tracker mode is selected; the detections obtained after processing (missing bolts in this case) will be simply assigned a unique Id and the output will be displayed. The Ids will be only unique for that particular frame and the same Ids can be reassigned when subsequent frames are processed.

4. OpenVINO inference and testing

In order to make an inference with the custom DNN models using the native inference engine, we need the models to be compatible with the OpenVINO toolkit. The execution process required to generate the IR models is as follows:

  • The pre-trained custom models are fed to the model optimizer provided in the toolkit. The model optimizer then converts it into the intermediate representation (IR) format with .bin and .xml files.
  • Next, the inference engine generates the output using the IR model.

4.1 Model Optimizer

Model optimizer is a command line tool that is used to convert a pre-trained model into an OpenVINO compatible model. It can convert any model from the OpenVINO supported formats (eg:- TensorFlow, PyTorch, ONNX etc.) into OpenVINO IR format, which can be later used for inferencing with the OpenVINO runtime.

4.2 Inference Engine

The inference engine is a C++ library that consists of the API required for reading the intermediate representation to execute the models.

4.3 Model conversion to IR format

Model optimizer takes in parameters like the input_shape and converts the TF model to .xml and .bin files. Below is an example of the command used.

python3 OpenVINO/model-optimizer/mo_tf.py –saved_model_dir model/ –input_shape=\[1,28,28\]

Fig 4. Model conversion flow Source

where IR is a pair of files describing the model:

  • .xml file – contains the network topology.
  • .bin file – has the weights and biases binary data.

In this experiment, models trained using the Tensorflow framework were used. Since we had a trained model, we need the model optimizer tool to convert the TF model to an OpenVINO IR model.

4.4 Model conversion steps from Tensorflow to OpenVINO format

There are multiple ways of converting a custom TF model into IR format. In our case, we have a custom model in HDF5 format.

In order in to convert to IR format, these steps were followed:

  • The Keras H5 model with custom layer is first loaded using tf package and then converted into a saved model format.
  • Then the saved model is converted into IR format by making use of the model optimizer script provided by OpenVINO toolkit.
  • The operation requires us to specify the input and output options so that the inference batch size and resolutions are maintained.
  • The OpenVINO model expects the inference request to be in NCHW format, where N=batch_size, C=size of color channel, H=input height, W=input width.

Further details about the steps discussed above can be found in the OpenVINO documentation in the link below:

https://docs.openvino.ai/2021.3/openvino_docs_MO_DG_Deep_Learning_Model_Optimizer_DevGuide.html

5. Batch Processing in OpenVINO Model Server

Batch processing or batch prediction is the process where we use the trained DNN model to obtain a set of predictions from the input files, thereby reducing the compute time and improving the overall performance. Batch prediction can be made on either a fixed input batch or a varying one.

5.1 Varying batch size approach

By default, the model batch size is fixed for IR models. It is set by the model optimizer tool at the time of model conversion. However, if the size of inference request batch varies, then the OpenVINO toolkit will automatically reload the model with the new batch size.

During our experiment, the application encountered a scenario with varying input batches, causing the model to reload for each new request. This action led to increase in the processing time and the overall performance degraded as a result, hence it became necessary to have a fixed batch size during inference requests.

From the results tabulated below we can clearly observe that each time the input data with different batch size is received, the model is reloaded, leading to higher execution times. We also observe an extra response delay for the first request when starting the first execution. This behaviour is repeated in all testing scenarios:

Table 1.  The batch wise comparison for DNN nodes execution time (varying batch)

In the results tabulated above,

  • The Time/image value is calculated as:

(Analysis time + Upload time) / (total no of frames)

  • The Tower, Joint, Beam and Towerhole columns represent the different nodes processed, and contains the time taken to execute the node for a batch of images. 

Referring to the batchwise comparison table, we can make the following inference:

The towerhole node has the maximum execution time, when compared to the other nodes for each run. We also observe that the towerhole results show the maximum variation in terms of the time taken to process each batch. This is because the towerhole node has a varying input batch. As the joints detected (parent node) on the frames varies from frame to frame, the input batch size for the subsequent node (towerhole) varies correspondingly.  This leads to the model being reloaded every time a new request is received and thus increasing the execution time, which in turn negatively affects the performance.

5.2 Fixed batch size approach:

In order to circumvent the problem of multiple reloads during inference, we adopted a fixed batch size during the pre-processing stage. Corner cases are handled by introducing dummy data/images if the inference requests have the batch size smaller than the fixed size chosen for the project.

By having a fixed batch size during pre-processing, we were able to prevent the model from reloading for each inference request; as a result we get similar time for processing each batch, whereas in the previous runs the processing time varied according to the batch size.  Thus, we obtained an overall improvement in FPS. The extra time taken for the first inference run is observed here as well, but the difference is negligible when compared to the previous scenario.           

Table 2.  The batch wise comparison for DNN nodes execution time (fixed batch)  

5.3 Model Caching

While working with GPU devices, we may encounter the problem of higher model loading time which can lead to performance degradation. In order to overcome this, OpenVINO allows caching of inference models.

Enabling this option will allow OpenVINO to check if a model exists in the cache and if it does, it will automatically load it from cache. If the model doesn’t exist in cache, the model is loaded and then later stored in the caching directory for the subsequent runs.

For our experiments we could not make use of model caching as the inference request contained varying input batch size for different capabilities tested leading to automatic model reloading for each new request which in turn reduced the overall performance.

6. Comparison of overall performance

All the experimental runs depicted below were performed by keeping the same system parameters for both GPU and CPU based implementations. For overall comparison study, both the cases were considered (i.e. Tracker module enabled and Tracker module disabled). We ran the tests for overall performance with a fixed batch implementation for multiple batch sizes (namely, 1,4,5,6,10), but there was no significant change in the overall FPS (or inference per frame time). The best execution time was recorded and tabulated.

Table 3.  Nodewise comparison of execution time with and without GPU enabled

From the results obtained for both the inference modes, we can observe that the overall performance on the Intel TigerLake-UP3 board was best with the GPU enabled OpenVINO implementation.

Scroll to Top

Human Pose Detection & Classification

Some Buildings in a city

Features:

  • Suitable for real time detection on edge devices
  • Detects human pose / key points and recognizes movement / behavior
  • Light weight deep learning models with good accuracy and performance

Target Markets:

  • Patient Monitoring in Hospitals
  • Surveillance
  • Sports/Exercise Pose Estimation
  • Retail Analytics

OCR / Pattern Recognition

Some Buildings in a city

Use cases :

  • Analog dial reading
  • Digital meter reading
  • Label recognition
  • Document OCR

Highlights :

  • Configurable for text or pattern recognition
  • Simultaneous Analog and Digital Dial reading
  • Lightweight implementation

Behavior Monitoring

Some Buildings in a city

Use cases :

  • Fall Detection
  • Social Distancing

Highlights :

  • Can define region of interest to monitor
  • Multi-subject monitoring
  • Multi-camera monitoring
  • Alarm triggers

Attire & PPE Detection

Some Buildings in a city

Use cases :

  • PPE Checks
  • Disallowed attire checks

Use cases :

  • Non-intrusive adherence checks
  • Customizable attire checks
  • Post-deployment trainable

 

Request for Video





    Real Time Color Detection​

    Use cases :

    • Machine vision applications such as color sorter or food defect detection

    Highlights :

    • Color detection algorithm with real time performance
    • Detects as close to human vison as possible including color shade discrimination
    • GPGPU based algorithm on NVIDIA CUDA and Snapdragon Adreno GPU
    • Extremely low latency (a few 10s of milliseconds) for detection
    • Portable onto different hardware platforms

    Missing Artifact Detection

    Use cases :

    • Detection of missing components during various stages of manufacturing of industrial parts
    • Examples include : missing nuts and bolts, missing ridges, missing grooves on plastic and metal blocks

    Highlights :

    • Custom neural network and algorithms to achieve high accuracy and inference speed
    • Single-pass detection of many categories of missing artifacts
    • In-field trainable neural networks with dynamic addition of new artifact categories
    • Implementation using low cost cameras and not expensive machine-vision cameras
    • Learning via the use of minimal training sets
    • Options to implement the neural network on GPU or CPU based systems

    Real Time Manufacturing Line Inspection

    Use cases :

    • Detection of defects on the surface of manufactured goods (metal, plastic, glass, food, etc.)
    • Can be integrated into the overall automated QA infrastructure on an assembly line.

    Highlights :

    • Custom neural network and algorithms to achieve high accuracy and inference speed
    • Use of consumer or industrial grade cameras
    • Requires only a few hundred images during the training phase
    • Supports incremental training of the neural network with data augmentation
    • Allows implementation on low cost GPU or CPU based platforms

    Ground Based Infrastructure analytics

    Some Buildings in a city

    Use cases :

    • Rail tracks (public transport, mining, etc.)
    • Highways
    • Tunnels

    Highlights :

    • Analysis of video and images from 2D & 3D RGB camera sensors
    • Multi sensor support (X-ray, thermal, radar, etc.)
    • Detection of anomalies in peripheral areas of core infrastructure (Ex: vegetation or stones near rail tracks)

    Aerial Analytics

    Use cases :

    • Rail track defect detection
    • Tower defect detection: Structural analysis of Power
      transmission towers
    • infrastructure mapping

    Highlights :

    • Defect detection from a distance
    • Non-intrusive
    • Automatic video capture with perfectly centered ROI
    • No manual intervention is required by a pilot for
      camera positioning

    SANJAY JAYAKUMAR

    Co-founder & CEO

     

    Founder and Managing director of Ignitarium, Sanjay has been responsible for defining Ignitarium’s core values, which encompass the organisation’s approach towards clients, partners, and all internal stakeholders, and in establishing an innovation and value-driven organisational culture.

     

    Prior to founding Ignitarium in 2012, Sanjay spent the initial 22 years of his career with the VLSI and Systems Business unit at Wipro Technologies. In his formative years, Sanjay worked in diverse engineering roles in Electronic hardware design, ASIC design, and custom library development. Sanjay later handled a flagship – multi-million dollar, 600-engineer strong – Semiconductor & Embedded account owning complete Delivery and Business responsibility.

     

    Sanjay graduated in Electronics and Communication Engineering from College of Engineering, Trivandrum, and has a Postgraduate degree in Microelectronics from BITS Pilani.

     

    Request Free Demo




      RAMESH EMANI Board Member

      RAMESH EMANI

      Board Member

      Ramesh was the Founder and CEO of Insta Health Solutions, a software products company focused on providing complete hospital and clinic management solutions for hospitals and clinics in India, the Middle East, Southeast Asia, and Africa. He raised Series A funds from Inventus Capital and then subsequently sold the company to Practo Technologies, India. Post-sale, he held the role of SVP and Head of the Insta BU for 4 years. He has now retired from full-time employment and is working as a consultant and board member.

       

      Prior to Insta, Ramesh had a 25-year-long career at Wipro Technologies where he was the President of the $1B Telecom and Product Engineering Solutions business heading a team of 19,000 people with a truly global operations footprint. Among his other key roles at Wipro, he was a member of Wipro's Corporate Executive Council and was Chief Technology Officer.

       

      Ramesh is also an Independent Board Member of eMIDs Technologies, a $100M IT services company focused on the healthcare vertical with market presence in the US and India.

       

      Ramesh holds an M-Tech in Computer Science from IIT-Kanpur.

      ​Manoj Thandassery

      VP – Sales & Business Development

      Manoj Thandassery is responsible for the India business at Ignitarium. He has over 20 years of leadership and business experience in various industries including the IT and Product Engineering industry. He has held various responsibilities including Geo head at Sasken China, Portfolio head at Wipro USA, and India & APAC Director of Sales at Emeritus. He has led large multi-country teams of up to 350 employees. Manoj was also an entrepreneur and has successfully launched and scaled, via multiple VC-led investment rounds, an Edtech business in the K12 space that was subsequently sold to a global Edtech giant.
      An XLRI alumnus, Manoj divides his time between Pune and Bangalore.

       

      MALAVIKA GARIMELLA​

      General Manager - Marketing

      A professional with a 14-year track record in technology marketing, Malavika heads marketing in Ignitarium. Responsible for all branding, positioning and promotional initiatives in the company, she has collaborated with technical and business teams to further strengthen Ignitarium's positioning as a key E R&D services player in the ecosystem.

      Prior to Ignitarium, Malavika has worked in with multiple global tech startups and IT consulting companies as a marketing consultant. Earlier, she headed marketing for the Semiconductor & Systems BU at Wipro Technologies and worked at IBM in their application software division.

      Malavika completed her MBA in Marketing from SCMHRD, Pune, and holds a B.E. degree in Telecommunications from RVCE, Bengaluru.

       

      PRADEEP KUMAR LAKSHMANAN

      VP - Operations

      Pradeep comes with an overall experience of 26 years across IT services and Academia. In his previous role at Virtusa, he played the role of Delivery Leader for the Middle East geography. He has handled complex delivery projects including the transition of large engagements, account management, and setting up new delivery centers.

      Pradeep graduated in Industrial Engineering and Management, went on to secure an MBA from CUSAT, and cleared UGN Net in Management. He also had teaching stints at his alma mater, CUSAT, and other management institutes like DCSMAT. A certified P3O (Portfolio, Program & Project Management) from the Office of Government Commerce, UK, Pradeep has been recognized for key contributions in the Management domain, at his previous organizations, Wipro & Virtusa.

      In his role as the Head of Operations at Ignitarium, Pradeep leads and manages operational functions such as Resource Management, Procurement, Facilities, IT Infrastructure, and Program Management office.

       

      SONA MATHEW Director – Human Resources

      SONA MATHEW

      AVP – Human Resources

      Sona heads Human Resource functions - Employee Engagement, HR Operations and Learning & Development – at Ignitarium. Her expertise include deep and broad experience in strategic people initiatives, performance management, talent transformation, talent acquisition, people engagement & compliance in the Information Technology & Services industry.

       

      Prior to Ignitarium, Sona has had held diverse HR responsibilities at Litmus7, Cognizant and Wipro.

       

      Sona graduated in Commerce from St. Xaviers College and did her MBA in HR from PSG College of Technology.

       

      ASHWIN RAMACHANDRAN

      Vice President - Sales

      As VP of Sales, Ashwin is responsible for Ignitarium’s go-to-market strategy, business, client relationships, and customer success in the Americas. He brings in over a couple of decades of experience, mainly in the product engineering space with customers from a wide spectrum of industries, especially in the Hi-Tech/semiconductor and telecom verticals.

       

      Ashwin has worked with the likes of Wipro, GlobalLogic, and Mastek, wherein unconventional and creative business models were used to bring in non-linear revenue. He has strategically diversified, de-risked, and grown his portfolios during his sales career.

       

      Ashwin strongly believes in the customer-first approach and works to add value and enhance the experiences of our customers.

       

      AZIF SALY Director – Sales

      AZIF SALY

      Vice President – Sales & Business Development

      Azif is responsible for go-to-market strategy, business development and sales at Ignitarium. Azif has over 14 years of cross-functional experience in the semiconductor product & service spaces and has held senior positions in global client management, strategic account management and business development. An IIM-K alumnus, he has been associated with Wipro, Nokia and Sankalp in the past.

       

      Azif handled key accounts and sales process initiatives at Sankalp Semiconductors. Azif has pursued entrepreneurial interests in the past and was associated with multiple start-ups in various executive roles. His start-up was successful in raising seed funds from Nokia, India. During his tenure at Nokia, he played a key role in driving product evangelism and customer success functions for the multimedia division.

       

      At Wipro, he was involved in customer engagement with global customers in APAC and US.

       

      RAJU KUNNATH Vice President – Enterprise & Mobility

      RAJU KUNNATH

      Distinguished Engineer – Digital

      At Ignitarium, Raju's charter is to architect world class Digital solutions at the confluence of Edge, Cloud and Analytics. Raju has over 25 years of experience in the field of Telecom, Mobility and Cloud. Prior to Ignitarium, he worked at Nokia India Pvt. Ltd. and Sasken Communication Technologies in various leadership positions and was responsible for the delivery of various developer platforms and products.

       

      Raju graduated in Electronics Engineering from Model Engineering College, Cochin and has an Executive Post Graduate Program (EPGP) in Strategy and Finance from IIM Kozhikode.

       

      PRADEEP SUKUMARAN Vice President – Business Strategy & Marketing

      PRADEEP SUKUMARAN

      Vice President - Software Engineering

      Pradeep heads the Software Engineering division, with a charter to build and grow a world-beating delivery team. He is responsible for all the software functions, which includes embedded & automotive software, multimedia, and AI & Digital services

      At Ignitarium, he was previously part of the sales and marketing team with a special focus on generating a sales pipeline for Vision Intelligence products and services, working with worldwide field sales & partner ecosystems in the U.S  Europe, and APAC.

      Prior to joining Ignitarium in 2017, Pradeep was Senior Solutions Architect at Open-Silicon, an ASIC design house. At Open-Silicon, where he spent a good five years, Pradeep was responsible for Front-end, FPGA, and embedded SW business development, marketing & technical sales and also drove the IoT R&D roadmap. Pradeep started his professional career in 2000 at Sasken, where he worked for 11 years, primarily as an embedded multimedia expert, and then went on to lead the Multimedia software IP team.

      Pradeep is a graduate in Electronics & Communication from RVCE, Bangalore.

       

      SUJEET SREENIVASAN Vice President – Embedded

      SUJEET SREENIVASAN

      Vice President – Automotive Technology

       

      Sujeet is responsible for driving innovation in Automotive software, identifying Automotive technology trends and advancements, evaluating their potential impact, and development of solutions to meet the needs of our Automotive customers.

      At Ignitarium, he was previously responsible for the growth and P&L of the Embedded Business unit focusing on Multimedia, Automotive, and Platform software.

      Prior to joining Ignitarium in 2016, Sujeet has had a career spanning more than 16 years at Wipro. During this stint, he has played diverse roles from Solution Architect to Presales Lead covering various domains. His technical expertise lies in the areas of Telecom, Embedded Systems, Wireless, Networking, SoC modeling, and Automotive. He has been honored as a Distinguished Member of the Technical Staff at Wipro and has multiple patents granted in the areas of Networking and IoT Security.

      Sujeet holds a degree in Computer Science from Government Engineering College, Thrissur.

       

      RAJIN RAVIMONY Distinguished Engineer

      RAJIN RAVIMONY

      Distinguished Engineer

       

      At Ignitarium, Rajin plays the role of Distinguished Engineer for complex SoCs and systems. He's an expert in ARM-based designs having architected more than a dozen SoCs and played hands-on design roles in several tens more. His core areas of specialization include security and functional safety architecture (IEC61508 and ISO26262) of automotive systems, RTL implementation of math intensive signal processing blocks as well as design of video processing and related multimedia blocks.

       

      Prior to Ignitarium, Rajin worked at Wipro Technologies for 14 years where he held roles of architect and consultant for several VLSI designs in the automotive and consumer domains.

       

      Rajin holds an MS in Micro-electronics from BITS Pilani.

       

      SIBY ABRAHAM Executive Vice President, Strategy

      SIBY ABRAHAM

      Executive Vice President, Strategy

       

      As EVP, of Strategy at Ignitarium, Siby anchors multiple functions spanning investor community relations, business growth, technology initiatives as well and operational excellence.

       

      Siby has over 31 years of experience in the semiconductor industry. In his last role at Wipro Technologies, he headed the Semiconductor Industry Practice Group where he was responsible for business growth and engineering delivery for all of Wipro’s semiconductor customers. Prior to that, he held a vast array of crucial roles at Wipro including Chief Technologist & Vice President, CTO Office, Global Delivery Head for Product Engineering Services, Business Head of Semiconductor & Consumer Electronics, and Head of Unified Competency Framework. He was instrumental in growing Wipro’s semiconductor business to over $100 million within 5 years and turning around its Consumer Electronics business in less than 2 years. In addition, he was the Engineering Manager for Enthink Inc., a semiconductor IP-focused subsidiary of Wipro. Prior to that, Siby was the Technical Lead for several of the most prestigious system engineering projects executed by Wipro R&D.

       

      Siby has held a host of deeply impactful positions, which included representing Wipro in various World Economic Forum working groups on Industrial IOT and as a member of IEEE’s IOT Steering Committee.

       

      He completed his MTech. in Electrical Engineering (Information and Control) from IIT, Kanpur and his BTech. from NIT, Calicut

       

      SUJEETH JOSEPH Chief Product Officer

      SUJEETH JOSEPH

      Chief Technology Officer

       

      As CTO, Sujeeth is responsible for defining the technology roadmap, driving IP & solution development, and transitioning these technology components into practically deployable product engineering use cases.

       

      With a career spanning over 30+ years, Sujeeth Joseph is a semiconductor industry veteran in the SoC, System and Product architecture space. At SanDisk India, he was Director of Architecture for the USD $2B Removable Products Group. Simultaneously, he also headed the SanDisk India Patenting function, the Retail Competitive Analysis Group and drove academic research programs with premier Indian academic Institutes. Prior to SanDisk, he was Chief Architect of the Semiconductor & Systems BU (SnS) of Wipro Technologies. Over a 19-year career at Wipro, he has played hands-on and leadership roles across all phases of the ASIC and System design flow.

       

      He graduated in Electronics Engineering from Bombay University in 1991.

       

      SUJITH MATHEW IYPE Co-founder & CTO

      SUJITH MATHEW IYPE

      Co-founder & COO

       

      As Ignitarium's Co-founder and COO, Sujith is responsible for driving the operational efficiency and streamlining process across the organization. He is also responsible for the growth and P&L of the Semiconductor Business Unit.

       

      Apart from establishing a compelling story in VLSI, Sujith was responsible for Ignitarium's foray into nascent technology areas like AI, ML, Computer Vision, and IoT, nurturing them in our R&D Lab - "The Crucible".

       

      Prior to founding Ignitarium, Sujith played the role of a VLSI architect at Wipro Technologies for 13 years. In true hands-on mode, he has built ASICs and FPGAs for the Multimedia, Telecommunication, and Healthcare domains and has provided technical leadership for many flagship projects executed by Wipro.

       

      Sujith graduated from NIT - Calicut in the year 2000 in Electronics and Communications Engineering and thereafter he has successfully completed a one-year executive program in Business Management from IIM Calcutta.

       

      RAMESH SHANMUGHAM Co-founder & COO

      RAMESH SHANMUGHAM

      Co-founder & CRO

      As Co-founder and Chief Revenue Officer of Ignitarium, Ramesh has been responsible for global business and marketing as well as building trusted customer relationships upholding the company's core values.

      Ramesh has over 25 years of experience in the Semiconductor Industry covering all aspects of IC design. Prior to Ignitarium, Ramesh was a key member of the senior management team of the semiconductor division at Wipro Technologies. Ramesh has played key roles in Semiconductor Delivery and Pre-sales at a global level.

      Ramesh graduated in Electronics Engineering from Model Engineering College, Cochin, and has a Postgraduate degree in Microelectronics from BITS Pilani.