AI transforming driving photo
AI is increasingly becoming a part of our everyday lives, across different domains. Have you ever thought about the possibility of a custom driver and passenger experience based on your unique and personal needs? Will AI eliminate the need for us to drive altogether? Would it provide a convenient alternative to all our ‘on road woes’?

AI transforms driver safety and comfort: 4 things that will never be the same


AI is increasingly becoming a part of our everyday lives, across different domains. Have you ever thought about the possibility of a custom driver and passenger experience based on your unique and personal needs? Will AI eliminate the need for us to drive altogether? Would it provide a convenient alternative to all our ‘on road woes’?

Right from prompts in the form of driver alerts on rash / distracted driving and driver drowsiness, to ensuring dynamic personalization of in-cabin preferences during the drive, to foreseeing system inconsistencies, AI is taking over multiple aspects of the experience of owning a car, from the basics of driving to the comfort of passengers in the vehicle. It all started with providing driver assistance for passenger and commercial vehicle segments, and then progressed into other areas, as we will see in this blog.

Let us close our eyes and imagine ourselves to be in a common driving scenario. You are changing lanes on the freeway, and suddenly, a blinking orange light on your side-view mirror and a loud beep alert you to a car coming alongside. This is an example of a blind spot detection feature, which is standard in vehicles with higher trim levels.

Fig 1: Features enabled with Advanced Driver Assistance Systems (ADAS).

The automotive industry has started to incorporate more of such technology to keep drivers alert and accident-free. Multiple sensors and alert systems are used to help drivers prevent car accidents by alerting them about possible dangers, since most accidents result from human error. SAE’s Levels of Driving Automation, Level 01 & Level 02 – the global standard for driving automation lists out other features such as parking-assistance, lane-keep assistance, and Adaptive Cruise Control.

However, AI technology has not yet evolved to levels of full automation here. Instead, the driver is responsible for monitoring and reacting to their environment and therefore we require a system that checks the driver for high self-awareness levels. Let us take up a few AI and Deep Learning based automotive applications that enable these.

Driver drowsiness and distraction detection

What about all those driver distraction activities that are now becoming increasingly common, because of the devices in our hands and the added entertainment systems in the car? Often, we see drivers texting, speaking on calls, talking to passengers or busy shuffling music. While paying attention to these tasks, their attention tends to shift off the road. Here is where machine learning-based Driver Monitoring System (DMS) apps can be used to trigger alerts to the driver in case of drowsiness detection and other distractions as above.

Fig 2: Camera & Radar Sensors are used to help with Driver Drowsiness Detection. Source

This is achieved with a mono camera facing the driver that streams video onto an AI-edge device that runs multiple convolutional neural networks (CNNs) for Face detection, Head pose estimation, Gaze estimation and Eye state analysis.

With the onset of Autonomous Driving (AD) features that are available in most of the higher-end trims, the car can cruise autonomously on the highway with a click of a button.

Fig 3: Driver’s hand are off the steering wheel once AD features are activated.

Once activated, the drivers’ hands are off the steering wheel. In this autonomous driving mode, Facial expression features alone cannot determine the inability of the driver to control the vehicle, when a sudden need arises. Moreover, the use of driver’s steering behavior over the course of long trips is also an indicator of the driver’s fatigue level and the onset of drowsiness.

Fig 4: Body Keypoint tracking of the driver.

In the above case, CNN models for Body Keypoint tracking are also considered to keep an eye on how the driver interacts with objects or the interfaces of the vehicle.

Late fusion on multi-modal data streams from Forward Collision Warning (FCW) Radar with the in-cabin DMS camera is a more effective solution to increase the reaction time of the driver for different danger levels, compared to a scenario where there is only DMS detection in the absence of FCW.

Embedding mmwave radars in the driver seats also helps with detecting vital signs such as Respiration rate (RR), Heart rate (HR) and Heart rate variability (HRV). If the system identifies signs of unconsciousness from the heart rate variations of the driver, it alerts the vehicle occupants, and also the AD features kick in to bring the vehicle to safety.

In-cabin Occupancy Detection

With increasing automation and better connectivity, safety systems will continue to play a major role in the future. One way to improve safety in automobile and commercial vehicles is to install radar systems in the cabin that can detect even the faintest breathing movement of humans.

Fig 5: In-cabin Occupancy Detection

One critical use case is child occupancy detection, where children are inadvertently trapped or left unattended in vehicles, which can lead to heatstroke and other such casualties. With a proper safety system in place, if the child is left behind, the system notifies the vehicle, which then sends out warning signals, to get the attention of the car owner to act on time, and with urgency.

Another area of use is to extend occupancy detection to optimizing occupants against injuries in collisions including vehicle roll overs where, the signals from the sensors detect the strength and direction of a collision and can activate the restraint mechanisms in the vehicle, for example seatbelt pretensioners and airbags, as required for maximum occupant protection. These systems save lives and protect vehicle occupants from injury in case of a collision as it keeps the accelerations and forces in the event of an accident as low as possible.

In-cabin Noise Suppression

In fleet vehicles, where driver’s speech must be recorded or used to control devices, the ambient noise (from ICE engine or HVAC or wind) can result in degraded speech. For real-time noise suppression that counter stationary and non-stationary noises, traditional ANC methods which rely on generating anti-noise, do not fit the bill.

Fig 6: Type of noise that determines in-cabin noise. Source

Here, use of AI in audio processing helps in creating a solution which significantly improves the Speech to Noise Ratio (SNR). The deep learning model is trained on multiple noise profiles with a variety of conditions and the resulting model can provide good results in suppressing noise and increasing the speech quality in varying environments.

Analyzing Road Conditions for Road Safety with the help of Smart Public Infrastructures

Connectivity has transformed the way in which human beings interact. The Internet has also enabled closer collaboration with machines, and smart public infrastructure systems are here to help achieve the overall goal of efficient, smarter, and safer cities.

Fig 7: Smart Public Infrastructure. Source

To make cities smarter, vehicles and infrastructure have intelligent systems that can monitor, measure, and analyze data in a highly dynamic environment. Such data is used to achieve smooth traffic flow, infrastructure management (example parking), pedestrian safety, people security etc. 3D Lidars are being tested instead of cameras, to sense traffic flow and send data to the cloud for multiple sink points, to help improve overall accuracy. Some examples are dynamic traffic signal management for smooth traffic flow and predictive road conditions as a service streamed to vehicles as an early warning which can then help the car/driver to anticipate road conditions and reroute their journey.

Expanding on the above, data from the cloud is streamed to the vehicle via cellular V2X (vehicle-to-everything) and is currently being tested with 5G connectivity due to its low latency. This enables Analyzing Road Conditions in real time mode.

Fig 8: Cellular V2X used to enable Analyzing Road Conditions in real time mode. Source

Real-time detection of road conditions offers continuous updates to drivers on road construction, vehicle crashes, monitoring speed limits and road closures prior to their journey. This is another area where AI-based predictive technology may prove to be extremely crucial for drivers to be able to gauge their routes and plan to avoid congestion or hazards. 

Also, as the number of networked vehicles in the market increases, the vehicle data is streamed to the cloud and consumed by the car manufacturer for various purposes including data-set collection and predictive maintenance.


It is clear from the use cases, some of which are listed above, that AI in Automobiles related to safe transportation, safety, and breakdown warnings, is mature and is here to stay.
European New Car Assessment Programme (Euro NCAP)* has always rewarded Occupant Status Monitoring (OSM) under the Safety Assist protocol that helps in decreasing behaviors and states linked to driver impairment. To get a full score in the OSM area, Direct Driver Monitoring system (DMS) will be a requirement from 2023 onwards as per the Euro NCAP roadmap (read here). Surely, DMS is ‘the next seatbelt’. And with the Euro NCAP’s 5 star rating, the period from ”paid-for-optional-features” to standardized technologies is shortened. Hence the automotive industry has been encouraged to move into a higher gear when it comes to offering these features as standards. Driver assistance and other safety systems have already made driving safer and more relaxed. The vision of ‘accident-free mobility’ in the automotive industry is turning into reality assisted by AI.

The deep footprint Ignitarium has in Product Engineering Services, and the current work that involves combining AI hardware, software, and services to create top-to-bottom automated mobility solutions, positions Ignitarium as a strong player and partner in this space.

* Euro NCAP’s five-star safety rating system help consumers and businesses to compare vehicles more easily and to help them identify the safest choice for their needs hence promoting standard fitment across the car volume sold in the European Community in combination with good functionality for these systems, where this is possible.

Scroll to Top

Human Pose Detection & Classification

Some Buildings in a city


  • Suitable for real time detection on edge devices
  • Detects human pose / key points and recognizes movement / behavior
  • Light weight deep learning models with good accuracy and performance

Target Markets:

  • Patient Monitoring in Hospitals
  • Surveillance
  • Sports/Exercise Pose Estimation
  • Retail Analytics

OCR / Pattern Recognition

Some Buildings in a city

Use cases :

  • Analog dial reading
  • Digital meter reading
  • Label recognition
  • Document OCR

Highlights :

  • Configurable for text or pattern recognition
  • Simultaneous Analog and Digital Dial reading
  • Lightweight implementation

Behavior Monitoring

Some Buildings in a city

Use cases :

  • Fall Detection
  • Social Distancing

Highlights :

  • Can define region of interest to monitor
  • Multi-subject monitoring
  • Multi-camera monitoring
  • Alarm triggers

Attire & PPE Detection

Some Buildings in a city

Use cases :

  • PPE Checks
  • Disallowed attire checks

Use cases :

  • Non-intrusive adherence checks
  • Customizable attire checks
  • Post-deployment trainable


Request for Video

    Real Time Color Detection​

    Use cases :

    • Machine vision applications such as color sorter or food defect detection

    Highlights :

    • Color detection algorithm with real time performance
    • Detects as close to human vison as possible including color shade discrimination
    • GPGPU based algorithm on NVIDIA CUDA and Snapdragon Adreno GPU
    • Extremely low latency (a few 10s of milliseconds) for detection
    • Portable onto different hardware platforms

    Missing Artifact Detection

    Use cases :

    • Detection of missing components during various stages of manufacturing of industrial parts
    • Examples include : missing nuts and bolts, missing ridges, missing grooves on plastic and metal blocks

    Highlights :

    • Custom neural network and algorithms to achieve high accuracy and inference speed
    • Single-pass detection of many categories of missing artifacts
    • In-field trainable neural networks with dynamic addition of new artifact categories
    • Implementation using low cost cameras and not expensive machine-vision cameras
    • Learning via the use of minimal training sets
    • Options to implement the neural network on GPU or CPU based systems

    Real Time Manufacturing Line Inspection

    Use cases :

    • Detection of defects on the surface of manufactured goods (metal, plastic, glass, food, etc.)
    • Can be integrated into the overall automated QA infrastructure on an assembly line.

    Highlights :

    • Custom neural network and algorithms to achieve high accuracy and inference speed
    • Use of consumer or industrial grade cameras
    • Requires only a few hundred images during the training phase
    • Supports incremental training of the neural network with data augmentation
    • Allows implementation on low cost GPU or CPU based platforms

    Ground Based Infrastructure analytics

    Some Buildings in a city

    Use cases :

    • Rail tracks (public transport, mining, etc.)
    • Highways
    • Tunnels

    Highlights :

    • Analysis of video and images from 2D & 3D RGB camera sensors
    • Multi sensor support (X-ray, thermal, radar, etc.)
    • Detection of anomalies in peripheral areas of core infrastructure (Ex: vegetation or stones near rail tracks)

    Aerial Analytics

    Use cases :

    • Rail track defect detection
    • Tower defect detection: Structural analysis of Power
      transmission towers
    • infrastructure mapping

    Highlights :

    • Defect detection from a distance
    • Non-intrusive
    • Automatic video capture with perfectly centered ROI
    • No manual intervention is required by a pilot for
      camera positioning


    Co-founder & CEO


    Founder and Managing director of Ignitarium, Sanjay has been responsible for defining Ignitarium’s core values, which encompass the organisation’s approach towards clients, partners, and all internal stakeholders, and in establishing an innovation and value-driven organisational culture.


    Prior to founding Ignitarium in 2012, Sanjay spent the initial 22 years of his career with the VLSI and Systems Business unit at Wipro Technologies. In his formative years, Sanjay worked in diverse engineering roles in Electronic hardware design, ASIC design, and custom library development. Sanjay later handled a flagship – multi-million dollar, 600-engineer strong – Semiconductor & Embedded account owning complete Delivery and Business responsibility.


    Sanjay graduated in Electronics and Communication Engineering from College of Engineering, Trivandrum, and has a Postgraduate degree in Microelectronics from BITS Pilani.


    Request Free Demo

      RAMESH EMANI Board Member


      Board Member

      Ramesh was the Founder and CEO of Insta Health Solutions, a software products company focused on providing complete hospital and clinic management solutions for hospitals and clinics in India, the Middle East, Southeast Asia, and Africa. He raised Series A funds from Inventus Capital and then subsequently sold the company to Practo Technologies, India. Post-sale, he held the role of SVP and Head of the Insta BU for 4 years. He has now retired from full-time employment and is working as a consultant and board member.


      Prior to Insta, Ramesh had a 25-year-long career at Wipro Technologies where he was the President of the $1B Telecom and Product Engineering Solutions business heading a team of 19,000 people with a truly global operations footprint. Among his other key roles at Wipro, he was a member of Wipro's Corporate Executive Council and was Chief Technology Officer.


      Ramesh is also an Independent Board Member of eMIDs Technologies, a $100M IT services company focused on the healthcare vertical with market presence in the US and India.


      Ramesh holds an M-Tech in Computer Science from IIT-Kanpur.


      General Manager - Marketing

      A professional with a 14-year track record in technology marketing, Malavika heads marketing in Ignitarium. Responsible for all branding, positioning and promotional initiatives in the company, she has collaborated with technical and business teams to further strengthen Ignitarium's positioning as a key E R&D services player in the ecosystem.

      Prior to Ignitarium, Malavika has worked in with multiple global tech startups and IT consulting companies as a marketing consultant. Earlier, she headed marketing for the Semiconductor & Systems BU at Wipro Technologies and worked at IBM in their application software division.

      Malavika completed her MBA in Marketing from SCMHRD, Pune, and holds a B.E. degree in Telecommunications from RVCE, Bengaluru.



      VP - Operations

      Pradeep comes with an overall experience of 26 years across IT services and Academia. In his previous role at Virtusa, he played the role of Delivery Leader for the Middle East geography. He has handled complex delivery projects including the transition of large engagements, account management, and setting up new delivery centers.

      Pradeep graduated in Industrial Engineering and Management, went on to secure an MBA from CUSAT, and cleared UGN Net in Management. He also had teaching stints at his alma mater, CUSAT, and other management institutes like DCSMAT. A certified P3O (Portfolio, Program & Project Management) from the Office of Government Commerce, UK, Pradeep has been recognized for key contributions in the Management domain, at his previous organizations, Wipro & Virtusa.

      In his role as the Head of Operations at Ignitarium, Pradeep leads and manages operational functions such as Resource Management, Procurement, Facilities, IT Infrastructure, and Program Management office.


      SONA MATHEW Director – Human Resources


      AVP – Human Resources

      Sona heads Human Resource functions - Employee Engagement, HR Operations and Learning & Development – at Ignitarium. Her expertise include deep and broad experience in strategic people initiatives, performance management, talent transformation, talent acquisition, people engagement & compliance in the Information Technology & Services industry.


      Prior to Ignitarium, Sona has had held diverse HR responsibilities at Litmus7, Cognizant and Wipro.


      Sona graduated in Commerce from St. Xaviers College and did her MBA in HR from PSG College of Technology.



      Vice President - Sales

      As VP of Sales, Ashwin is responsible for Ignitarium’s go-to-market strategy, business, client relationships, and customer success in the Americas. He brings in over a couple of decades of experience, mainly in the product engineering space with customers from a wide spectrum of industries, especially in the Hi-Tech/semiconductor and telecom verticals.


      Ashwin has worked with the likes of Wipro, GlobalLogic, and Mastek, wherein unconventional and creative business models were used to bring in non-linear revenue. He has strategically diversified, de-risked, and grown his portfolios during his sales career.


      Ashwin strongly believes in the customer-first approach and works to add value and enhance the experiences of our customers.


      AZIF SALY Director – Sales


      Vice President – Sales & Business Development

      Azif is responsible for go-to-market strategy, business development and sales at Ignitarium. Azif has over 14 years of cross-functional experience in the semiconductor product & service spaces and has held senior positions in global client management, strategic account management and business development. An IIM-K alumnus, he has been associated with Wipro, Nokia and Sankalp in the past.


      Azif handled key accounts and sales process initiatives at Sankalp Semiconductors. Azif has pursued entrepreneurial interests in the past and was associated with multiple start-ups in various executive roles. His start-up was successful in raising seed funds from Nokia, India. During his tenure at Nokia, he played a key role in driving product evangelism and customer success functions for the multimedia division.


      At Wipro, he was involved in customer engagement with global customers in APAC and US.


      RAJU KUNNATH Vice President – Enterprise & Mobility


      Distinguished Engineer – Digital

      At Ignitarium, Raju's charter is to architect world class Digital solutions at the confluence of Edge, Cloud and Analytics. Raju has over 25 years of experience in the field of Telecom, Mobility and Cloud. Prior to Ignitarium, he worked at Nokia India Pvt. Ltd. and Sasken Communication Technologies in various leadership positions and was responsible for the delivery of various developer platforms and products.


      Raju graduated in Electronics Engineering from Model Engineering College, Cochin and has an Executive Post Graduate Program (EPGP) in Strategy and Finance from IIM Kozhikode.


      PRADEEP SUKUMARAN Vice President – Business Strategy & Marketing


      Vice President - Software Engineering

      Pradeep heads the Software Engineering division, with a charter to build and grow a world-beating delivery team. He is responsible for all the software functions, which includes embedded & automotive software, multimedia, and AI & Digital services

      At Ignitarium, he was previously part of the sales and marketing team with a special focus on generating a sales pipeline for Vision Intelligence products and services, working with worldwide field sales & partner ecosystems in the U.S  Europe, and APAC.

      Prior to joining Ignitarium in 2017, Pradeep was Senior Solutions Architect at Open-Silicon, an ASIC design house. At Open-Silicon, where he spent a good five years, Pradeep was responsible for Front-end, FPGA, and embedded SW business development, marketing & technical sales and also drove the IoT R&D roadmap. Pradeep started his professional career in 2000 at Sasken, where he worked for 11 years, primarily as an embedded multimedia expert, and then went on to lead the Multimedia software IP team.

      Pradeep is a graduate in Electronics & Communication from RVCE, Bangalore.


      SUJEET SREENIVASAN Vice President – Embedded


      Vice President – Automotive Technology


      Sujeet is responsible for driving innovation in Automotive software, identifying Automotive technology trends and advancements, evaluating their potential impact, and development of solutions to meet the needs of our Automotive customers.

      At Ignitarium, he was previously responsible for the growth and P&L of the Embedded Business unit focusing on Multimedia, Automotive, and Platform software.

      Prior to joining Ignitarium in 2016, Sujeet has had a career spanning more than 16 years at Wipro. During this stint, he has played diverse roles from Solution Architect to Presales Lead covering various domains. His technical expertise lies in the areas of Telecom, Embedded Systems, Wireless, Networking, SoC modeling, and Automotive. He has been honored as a Distinguished Member of the Technical Staff at Wipro and has multiple patents granted in the areas of Networking and IoT Security.

      Sujeet holds a degree in Computer Science from Government Engineering College, Thrissur.


      RAJIN RAVIMONY Distinguished Engineer


      Distinguished Engineer


      At Ignitarium, Rajin plays the role of Distinguished Engineer for complex SoCs and systems. He's an expert in ARM-based designs having architected more than a dozen SoCs and played hands-on design roles in several tens more. His core areas of specialization include security and functional safety architecture (IEC61508 and ISO26262) of automotive systems, RTL implementation of math intensive signal processing blocks as well as design of video processing and related multimedia blocks.


      Prior to Ignitarium, Rajin worked at Wipro Technologies for 14 years where he held roles of architect and consultant for several VLSI designs in the automotive and consumer domains.


      Rajin holds an MS in Micro-electronics from BITS Pilani.


      SIBY ABRAHAM Executive Vice President, Strategy


      Executive Vice President, Strategy


      As EVP, of Strategy at Ignitarium, Siby anchors multiple functions spanning investor community relations, business growth, technology initiatives as well and operational excellence.


      Siby has over 31 years of experience in the semiconductor industry. In his last role at Wipro Technologies, he headed the Semiconductor Industry Practice Group where he was responsible for business growth and engineering delivery for all of Wipro’s semiconductor customers. Prior to that, he held a vast array of crucial roles at Wipro including Chief Technologist & Vice President, CTO Office, Global Delivery Head for Product Engineering Services, Business Head of Semiconductor & Consumer Electronics, and Head of Unified Competency Framework. He was instrumental in growing Wipro’s semiconductor business to over $100 million within 5 years and turning around its Consumer Electronics business in less than 2 years. In addition, he was the Engineering Manager for Enthink Inc., a semiconductor IP-focused subsidiary of Wipro. Prior to that, Siby was the Technical Lead for several of the most prestigious system engineering projects executed by Wipro R&D.


      Siby has held a host of deeply impactful positions, which included representing Wipro in various World Economic Forum working groups on Industrial IOT and as a member of IEEE’s IOT Steering Committee.


      He completed his MTech. in Electrical Engineering (Information and Control) from IIT, Kanpur and his BTech. from NIT, Calicut


      SUJEETH JOSEPH Chief Product Officer


      Chief Technology Officer


      As CTO, Sujeeth is responsible for defining the technology roadmap, driving IP & solution development, and transitioning these technology components into practically deployable product engineering use cases.


      With a career spanning over 30+ years, Sujeeth Joseph is a semiconductor industry veteran in the SoC, System and Product architecture space. At SanDisk India, he was Director of Architecture for the USD $2B Removable Products Group. Simultaneously, he also headed the SanDisk India Patenting function, the Retail Competitive Analysis Group and drove academic research programs with premier Indian academic Institutes. Prior to SanDisk, he was Chief Architect of the Semiconductor & Systems BU (SnS) of Wipro Technologies. Over a 19-year career at Wipro, he has played hands-on and leadership roles across all phases of the ASIC and System design flow.


      He graduated in Electronics Engineering from Bombay University in 1991.


      SUJITH MATHEW IYPE Co-founder & CTO


      Co-founder & COO


      As Ignitarium's Co-founder and COO, Sujith is responsible for driving the operational efficiency and streamlining process across the organization. He is also responsible for the growth and P&L of the Semiconductor Business Unit.


      Apart from establishing a compelling story in VLSI, Sujith was responsible for Ignitarium's foray into nascent technology areas like AI, ML, Computer Vision, and IoT, nurturing them in our R&D Lab - "The Crucible".


      Prior to founding Ignitarium, Sujith played the role of a VLSI architect at Wipro Technologies for 13 years. In true hands-on mode, he has built ASICs and FPGAs for the Multimedia, Telecommunication, and Healthcare domains and has provided technical leadership for many flagship projects executed by Wipro.


      Sujith graduated from NIT - Calicut in the year 2000 in Electronics and Communications Engineering and thereafter he has successfully completed a one-year executive program in Business Management from IIM Calcutta.


      RAMESH SHANMUGHAM Co-founder & COO


      Co-founder & CRO

      As Co-founder and Chief Revenue Officer of Ignitarium, Ramesh has been responsible for global business and marketing as well as building trusted customer relationships upholding the company's core values.

      Ramesh has over 25 years of experience in the Semiconductor Industry covering all aspects of IC design. Prior to Ignitarium, Ramesh was a key member of the senior management team of the semiconductor division at Wipro Technologies. Ramesh has played key roles in Semiconductor Delivery and Pre-sales at a global level.

      Ramesh graduated in Electronics Engineering from Model Engineering College, Cochin, and has a Postgraduate degree in Microelectronics from BITS Pilani.