Industrial IC design: Functional Safety and Smart Embedded Processing

Among all market segments addressed by the integrated circuit (IC) industry, Industrial is probably the most diverse with applications ranging from plant automation, power conversion (including conventional and alternative), remote monitoring, robotics, security, battery management, man machine interfaces (MMI), general sense & actuation etc. Add to this the natural adjacency to automotive and medical, and the segmentation becomes even more diverse.

Numerous factors contribute to the acceptance of an Industrial IC including richness of Analog interfaces, wired and wireless connectivity interfaces supported, availability of a wide selection of package footprints, FLASH/SRAM content, reliability metrics in terms of range of operating conditions supported, richness of available reference boards and software eco-system, generality / specificity of the industrial problem being addressed by the IC etc. While these factors contribute significantly to the viability and successful adoption of an Industrial targeted IC, we focus on 2 specific criteria that are considered critical.

Functional Safety

Although there is a bewildering array of independent safety standards with relevance to Industrial (EN50128/9, IEC61511, IEC60880, IEC62061, IEC61513, IEC61800, to name just a few), they fall under the overarching umbrella of the IEC 61508 “Functional Safety of Electrical / Electronic / Programmable Electronic safety-related systems” standard. Many of these standards do not provide technical measures or engineering recommendations that can be used as a concrete guideline towards achieving a specific SIL (Safety Integrity Level) for an Industrial IC – restricting themselves to prescribing life-cycle / process related (eg: documentation, reviews, management) considerations. In addition, there are other related standards like the ISO26262 (“Functional safety in E/E systems in road vehicles”) which, though is automotive-targeted, finds interest in the Industrial world due to related safety considerations plus the fact that many of the primary Industrial IC vendors are also players in the Automotive IC world.

A few years ago, the general approach towards functional safety was largely one of self-regulation; due to the fragmentation of the Industrial segment (often with more than 10,000 customers in a single geography with dramatically divergent silicon volume pick-up requirements from each), many Industrial semiconductor IC vendors did not deem it worth sufficient ROI to perform formal certifications against numerous industrial safety standards. Instead, they created devices adhering to a ‘robust minima’ of safety features drawn from proven internal design recipes. The silicon vendor would then support – often utilizing specialized third-party consulting houses – the eventual industrial customer as he takes his product through a specific flavor of certification relevant to his industry segment. Today, the voluntary ‘robust minima’ approach has changed to the need for mandatory, formal certification by a recognized agency (eg. TUV) against IEC61508 of every component that went into silicon design – be it physical libraries, EDA tools, S/W toolchains in addition to the IC design flow itself.

From an IC engineering perspective, numerous safety-centric techniques are employed to improve the SIL level of a device. Some general techniques (in the logic domain) include Error Correction Code (ECC) protection on memories, parity on buses, Memory Protection Units (MPUs) for access control, watch-dog timers for monitoring program flow health, run-time (as against boot-time) diagnostics of hardware units, multi-bit implementation of key control bits with majority voting schemes etc. Devices aiming to achieve higher SIL levels would implement specific variations to basic safety monitoring features – four examples of which are listed below:

  1. The basic watchdog functionality is enhanced with the following features:
    • The watchdog is clocked by a clock that is frequency and phase asynchronous to the CPU clock (on which the code is executing) – in other words using an independent time-base for the monitoring process.
    • The code that holds off the watchdog periodically, itself is monitored in hardware to ensure that the ‘holding’ off occurs only within a pre-defined time window (this is to offer some protection against code that has gone rogue but is still regularly and incorrectly holding off the watchdog).
  2. While many serial communication standards include a signature computation scheme embedded in the protocol (and implemented in hardware in the link-layer), an additional common hardware engine is included in the ASIC with the following features:
    • Capable of checking signatures over varying length payloads
    • Programmable to implement standard CRCs (eg CRC16, CRC32) in addition to being programmable for arbitrary polynomials
    • Fly-by-mode of CRC checking of blocks of data as they ‘fly-by’ between a peripheral and memory.
    • Dedicated DMA-mode wherein memory-resident blocks of data are subjected to CRC checks.
  3. ‘Idiot’-proofing of critical interfaces (eg: making it impossible to abruptly stop a high-speed motor) by including specific hardware features
    • Ensuring guaranteed real-time interrupt performance for critical interfaces by carefully crafting the interrupt architecture (eg: hardware vectoring, prioritization and pre-emption of several 100 interrupt sources rather than just a few 10s in the consumer world)
    • Enforcing privilege levels and root-of-trust authentication mechanisms in hardware such that an interface cannot be activated / deactivated except from a particular run-time privilege level.
  4. Borrowing from safety-critical automotive applications (eg; power-train, airbag deployment etc), Functional Redundancy Check (FRC) implementations have started appearing in ultra-safety critical Industrial usages (eg: nuclear plant automation). FRC is an extreme implementation of program execution sequence monitoring at both temporal and logical levels wherein an entire processor core or even an entire computational subsystem is duplicated (sometimes even in triplicate) such that one operates in lock-step with the other and reports / initiates fail safe procedures as soon as the lock-step is lost. Since the cost involved in terms of chip die-size is usually prohibitive, FRC implementations are not common-place except in the most safety critical Industrial applications.

In the physical domain, safety-centric physical design techniques include symmetry avoidance in layout (especially on clock paths), physical over-design and closure against stringent IR/EM/OCV/DFX targets.

  • Smart Embedded Processing

The challenge of achieving increased performance levels at reduced power budgets has been the primary driver for the proliferation of increasingly ‘smart’ Industrial control devices. The industrial IC space has been historically dominated for decades by the 8/16-bit computing architectures with hundreds of millions of devices deployed in the form of custom ASICs or ‘general-purpose’ Industrial MCUs. Over the past few years, 32-bit architectures (predominantly the ARM Cortex-M and R series) have forced their way into these spaces offering at one stroke significantly improved computational horsepower along with 8-bit class code and power efficiencies. These 32-bit architectures along with a robust tool and software ecosystem brought near-100% C-based – as against the historical assembly-based flow that used to be the norm – to the Industrial mainstream.

The integration of dedicated Floating-Point Engines (FPE) along with the main integer unit has allowed greater computational accuracies in Industrial applications (eg. high performance motor control) at the same time allowing these applications to be natively developed at a higher and more natural abstraction level (eg. in Matlab) without having to bother about the effort and inaccuracies involved in manual or semi-automated floating-to-fixed-point conversions. The FPE integration has followed the route of either a fully IEEE 754 compliant unit in the case of Industrial MCUs or stripped down FPEs supporting only a subset of floating point math operations in custom implementations targeting a specific industrial application. The majority of these FPE implementations for Industrial have limited themselves to single precision mathematical formats.

Embedded ‘smarts’ in the Industrial domain come in many unique ways; even a relatively routine function as a timer is usually unrecognizable from their counterparts in the consumer world – with the same timer being able to perform fractional counting at tens of frequencies, being scaled by tens of pre-scalers, using triggers from tens of peripherals, being able to skip/swallow pulses, being able to perform count value averaging, being able to self-calibrate time-bases against precision clock references, being able to perform multi-channel DMA un-assisted by an external DMA-controller etc. – all of these in addition to performing standard industrial control functions like compare or capture based timing. Often these timers are implemented as complex inter-linked state machines that run into several tens of kilo-gates; in the industrial SoC world the humble timer is neither humble nor a timer.

Devices of today integrate hardware acceleration engines for single (or groups of) sensor / actuator interfaces. For eg; in an electric meter application, the Metrology ASIC may integrate a dedicated Hall-Effect Sensor Engine that detects signal change, signal filtering, pattern matching, position storage and completion of the control loop without CPU intervention. On the ‘output’ side, (Pulse Width Modulation) PWM modules that once used to be ‘just’ duty-cycle modulation counters have become so sophisticated that it is not uncommon to see complete micro-coded hardware engines being integrated as programmable off-load engines.

Conclusion

Product teams designing ICs targeting the Industrial market need to carefully evaluate the challenges and trade-offs required to achieve certifiable functional safety ratings and intelligent computational capability in order to enable successful market adoption of these devices.

Leave a Comment

Scroll to Top

Human Pose Detection & Classification

Some Buildings in a city

Features:

  • Suitable for real time detection on edge devices
  • Detects human pose / key points and recognizes movement / behavior
  • Light weight deep learning models with good accuracy and performance

Target Markets:

  • Patient Monitoring in Hospitals
  • Surveillance
  • Sports/Exercise Pose Estimation
  • Retail Analytics

OCR / Pattern Recognition

Some Buildings in a city

Use cases :

  • Analog dial reading
  • Digital meter reading
  • Label recognition
  • Document OCR

Highlights :

  • Configurable for text or pattern recognition
  • Simultaneous Analog and Digital Dial reading
  • Lightweight implementation

Behavior Monitoring

Some Buildings in a city

Use cases :

  • Fall Detection
  • Social Distancing

Highlights :

  • Can define region of interest to monitor
  • Multi-subject monitoring
  • Multi-camera monitoring
  • Alarm triggers

Attire & PPE Detection

Some Buildings in a city

Use cases :

  • PPE Checks
  • Disallowed attire checks

Use cases :

  • Non-intrusive adherence checks
  • Customizable attire checks
  • Post-deployment trainable

 

Request for Video





    Real Time Color Detection​

    Use cases :

    • Machine vision applications such as color sorter or food defect detection

    Highlights :

    • Color detection algorithm with real time performance
    • Detects as close to human vison as possible including color shade discrimination
    • GPGPU based algorithm on NVIDIA CUDA and Snapdragon Adreno GPU
    • Extremely low latency (a few 10s of milliseconds) for detection
    • Portable onto different hardware platforms

    Missing Artifact Detection

    Use cases :

    • Detection of missing components during various stages of manufacturing of industrial parts
    • Examples include : missing nuts and bolts, missing ridges, missing grooves on plastic and metal blocks

    Highlights :

    • Custom neural network and algorithms to achieve high accuracy and inference speed
    • Single-pass detection of many categories of missing artifacts
    • In-field trainable neural networks with dynamic addition of new artifact categories
    • Implementation using low cost cameras and not expensive machine-vision cameras
    • Learning via the use of minimal training sets
    • Options to implement the neural network on GPU or CPU based systems

    Real Time Manufacturing Line Inspection

    Use cases :

    • Detection of defects on the surface of manufactured goods (metal, plastic, glass, food, etc.)
    • Can be integrated into the overall automated QA infrastructure on an assembly line.

    Highlights :

    • Custom neural network and algorithms to achieve high accuracy and inference speed
    • Use of consumer or industrial grade cameras
    • Requires only a few hundred images during the training phase
    • Supports incremental training of the neural network with data augmentation
    • Allows implementation on low cost GPU or CPU based platforms

    Ground Based Infrastructure analytics

    Some Buildings in a city

    Use cases :

    • Rail tracks (public transport, mining, etc.)
    • Highways
    • Tunnels

    Highlights :

    • Analysis of video and images from 2D & 3D RGB camera sensors
    • Multi sensor support (X-ray, thermal, radar, etc.)
    • Detection of anomalies in peripheral areas of core infrastructure (Ex: vegetation or stones near rail tracks)

    Aerial Analytics

    Use cases :

    • Rail track defect detection
    • Tower defect detection: Structural analysis of Power
      transmission towers
    • infrastructure mapping

    Highlights :

    • Defect detection from a distance
    • Non-intrusive
    • Automatic video capture with perfectly centered ROI
    • No manual intervention is required by a pilot for
      camera positioning

    SANJAY JAYAKUMAR

    Co-founder & CEO

     

    Founder and Managing director of Ignitarium, Sanjay has been responsible for defining Ignitarium’s core values, which encompass the organisation’s approach towards clients, partners, and all internal stakeholders, and in establishing an innovation and value-driven organisational culture.

     

    Prior to founding Ignitarium in 2012, Sanjay spent the initial 22 years of his career with the VLSI and Systems Business unit at Wipro Technologies. In his formative years, Sanjay worked in diverse engineering roles in Electronic hardware design, ASIC design, and custom library development. Sanjay later handled a flagship – multi-million dollar, 600-engineer strong – Semiconductor & Embedded account owning complete Delivery and Business responsibility.

     

    Sanjay graduated in Electronics and Communication Engineering from College of Engineering, Trivandrum, and has a Postgraduate degree in Microelectronics from BITS Pilani.

     

    Request Free Demo




      RAMESH EMANI Board Member

      RAMESH EMANI

      Board Member

      Ramesh was the Founder and CEO of Insta Health Solutions, a software products company focused on providing complete hospital and clinic management solutions for hospitals and clinics in India, the Middle East, Southeast Asia, and Africa. He raised Series A funds from Inventus Capital and then subsequently sold the company to Practo Technologies, India. Post-sale, he held the role of SVP and Head of the Insta BU for 4 years. He has now retired from full-time employment and is working as a consultant and board member.

       

      Prior to Insta, Ramesh had a 25-year-long career at Wipro Technologies where he was the President of the $1B Telecom and Product Engineering Solutions business heading a team of 19,000 people with a truly global operations footprint. Among his other key roles at Wipro, he was a member of Wipro's Corporate Executive Council and was Chief Technology Officer.

       

      Ramesh is also an Independent Board Member of eMIDs Technologies, a $100M IT services company focused on the healthcare vertical with market presence in the US and India.

       

      Ramesh holds an M-Tech in Computer Science from IIT-Kanpur.

      MALAVIKA GARIMELLA​

      General Manager - Marketing

      A professional with a 14-year track record in technology marketing, Malavika heads marketing in Ignitarium. Responsible for all branding, positioning and promotional initiatives in the company, she has collaborated with technical and business teams to further strengthen Ignitarium's positioning as a key E R&D services player in the ecosystem.

      Prior to Ignitarium, Malavika has worked in with multiple global tech startups and IT consulting companies as a marketing consultant. Earlier, she headed marketing for the Semiconductor & Systems BU at Wipro Technologies and worked at IBM in their application software division.

      Malavika completed her MBA in Marketing from SCMHRD, Pune, and holds a B.E. degree in Telecommunications from RVCE, Bengaluru.

       

      PRADEEP KUMAR LAKSHMANAN

      VP - Operations

      Pradeep comes with an overall experience of 26 years across IT services and Academia. In his previous role at Virtusa, he played the role of Delivery Leader for the Middle East geography. He has handled complex delivery projects including the transition of large engagements, account management, and setting up new delivery centers.

      Pradeep graduated in Industrial Engineering and Management, went on to secure an MBA from CUSAT, and cleared UGN Net in Management. He also had teaching stints at his alma mater, CUSAT, and other management institutes like DCSMAT. A certified P3O (Portfolio, Program & Project Management) from the Office of Government Commerce, UK, Pradeep has been recognized for key contributions in the Management domain, at his previous organizations, Wipro & Virtusa.

      In his role as the Head of Operations at Ignitarium, Pradeep leads and manages operational functions such as Resource Management, Procurement, Facilities, IT Infrastructure, and Program Management office.

       

      SONA MATHEW Director – Human Resources

      SONA MATHEW

      AVP – Human Resources

      Sona heads Human Resource functions - Employee Engagement, HR Operations and Learning & Development – at Ignitarium. Her expertise include deep and broad experience in strategic people initiatives, performance management, talent transformation, talent acquisition, people engagement & compliance in the Information Technology & Services industry.

       

      Prior to Ignitarium, Sona has had held diverse HR responsibilities at Litmus7, Cognizant and Wipro.

       

      Sona graduated in Commerce from St. Xaviers College and did her MBA in HR from PSG College of Technology.

       

      ASHWIN RAMACHANDRAN

      Vice President - Sales

      As VP of Sales, Ashwin is responsible for Ignitarium’s go-to-market strategy, business, client relationships, and customer success in the Americas. He brings in over a couple of decades of experience, mainly in the product engineering space with customers from a wide spectrum of industries, especially in the Hi-Tech/semiconductor and telecom verticals.

       

      Ashwin has worked with the likes of Wipro, GlobalLogic, and Mastek, wherein unconventional and creative business models were used to bring in non-linear revenue. He has strategically diversified, de-risked, and grown his portfolios during his sales career.

       

      Ashwin strongly believes in the customer-first approach and works to add value and enhance the experiences of our customers.

       

      AZIF SALY Director – Sales

      AZIF SALY

      Vice President – Sales & Business Development

      Azif is responsible for go-to-market strategy, business development and sales at Ignitarium. Azif has over 14 years of cross-functional experience in the semiconductor product & service spaces and has held senior positions in global client management, strategic account management and business development. An IIM-K alumnus, he has been associated with Wipro, Nokia and Sankalp in the past.

       

      Azif handled key accounts and sales process initiatives at Sankalp Semiconductors. Azif has pursued entrepreneurial interests in the past and was associated with multiple start-ups in various executive roles. His start-up was successful in raising seed funds from Nokia, India. During his tenure at Nokia, he played a key role in driving product evangelism and customer success functions for the multimedia division.

       

      At Wipro, he was involved in customer engagement with global customers in APAC and US.

       

      RAJU KUNNATH Vice President – Enterprise & Mobility

      RAJU KUNNATH

      Distinguished Engineer – Digital

      At Ignitarium, Raju's charter is to architect world class Digital solutions at the confluence of Edge, Cloud and Analytics. Raju has over 25 years of experience in the field of Telecom, Mobility and Cloud. Prior to Ignitarium, he worked at Nokia India Pvt. Ltd. and Sasken Communication Technologies in various leadership positions and was responsible for the delivery of various developer platforms and products.

       

      Raju graduated in Electronics Engineering from Model Engineering College, Cochin and has an Executive Post Graduate Program (EPGP) in Strategy and Finance from IIM Kozhikode.

       

      PRADEEP SUKUMARAN Vice President – Business Strategy & Marketing

      PRADEEP SUKUMARAN

      Vice President - Software Engineering

      Pradeep heads the Software Engineering division, with a charter to build and grow a world-beating delivery team. He is responsible for all the software functions, which includes embedded & automotive software, multimedia, and AI & Digital services

      At Ignitarium, he was previously part of the sales and marketing team with a special focus on generating a sales pipeline for Vision Intelligence products and services, working with worldwide field sales & partner ecosystems in the U.S  Europe, and APAC.

      Prior to joining Ignitarium in 2017, Pradeep was Senior Solutions Architect at Open-Silicon, an ASIC design house. At Open-Silicon, where he spent a good five years, Pradeep was responsible for Front-end, FPGA, and embedded SW business development, marketing & technical sales and also drove the IoT R&D roadmap. Pradeep started his professional career in 2000 at Sasken, where he worked for 11 years, primarily as an embedded multimedia expert, and then went on to lead the Multimedia software IP team.

      Pradeep is a graduate in Electronics & Communication from RVCE, Bangalore.

       

      SUJEET SREENIVASAN Vice President – Embedded

      SUJEET SREENIVASAN

      Vice President – Automotive Technology

       

      Sujeet is responsible for driving innovation in Automotive software, identifying Automotive technology trends and advancements, evaluating their potential impact, and development of solutions to meet the needs of our Automotive customers.

      At Ignitarium, he was previously responsible for the growth and P&L of the Embedded Business unit focusing on Multimedia, Automotive, and Platform software.

      Prior to joining Ignitarium in 2016, Sujeet has had a career spanning more than 16 years at Wipro. During this stint, he has played diverse roles from Solution Architect to Presales Lead covering various domains. His technical expertise lies in the areas of Telecom, Embedded Systems, Wireless, Networking, SoC modeling, and Automotive. He has been honored as a Distinguished Member of the Technical Staff at Wipro and has multiple patents granted in the areas of Networking and IoT Security.

      Sujeet holds a degree in Computer Science from Government Engineering College, Thrissur.

       

      RAJIN RAVIMONY Distinguished Engineer

      RAJIN RAVIMONY

      Distinguished Engineer

       

      At Ignitarium, Rajin plays the role of Distinguished Engineer for complex SoCs and systems. He's an expert in ARM-based designs having architected more than a dozen SoCs and played hands-on design roles in several tens more. His core areas of specialization include security and functional safety architecture (IEC61508 and ISO26262) of automotive systems, RTL implementation of math intensive signal processing blocks as well as design of video processing and related multimedia blocks.

       

      Prior to Ignitarium, Rajin worked at Wipro Technologies for 14 years where he held roles of architect and consultant for several VLSI designs in the automotive and consumer domains.

       

      Rajin holds an MS in Micro-electronics from BITS Pilani.

       

      SIBY ABRAHAM Executive Vice President, Strategy

      SIBY ABRAHAM

      Executive Vice President, Strategy

       

      As EVP, of Strategy at Ignitarium, Siby anchors multiple functions spanning investor community relations, business growth, technology initiatives as well and operational excellence.

       

      Siby has over 31 years of experience in the semiconductor industry. In his last role at Wipro Technologies, he headed the Semiconductor Industry Practice Group where he was responsible for business growth and engineering delivery for all of Wipro’s semiconductor customers. Prior to that, he held a vast array of crucial roles at Wipro including Chief Technologist & Vice President, CTO Office, Global Delivery Head for Product Engineering Services, Business Head of Semiconductor & Consumer Electronics, and Head of Unified Competency Framework. He was instrumental in growing Wipro’s semiconductor business to over $100 million within 5 years and turning around its Consumer Electronics business in less than 2 years. In addition, he was the Engineering Manager for Enthink Inc., a semiconductor IP-focused subsidiary of Wipro. Prior to that, Siby was the Technical Lead for several of the most prestigious system engineering projects executed by Wipro R&D.

       

      Siby has held a host of deeply impactful positions, which included representing Wipro in various World Economic Forum working groups on Industrial IOT and as a member of IEEE’s IOT Steering Committee.

       

      He completed his MTech. in Electrical Engineering (Information and Control) from IIT, Kanpur and his BTech. from NIT, Calicut

       

      SUJEETH JOSEPH Chief Product Officer

      SUJEETH JOSEPH

      Chief Technology Officer

       

      As CTO, Sujeeth is responsible for defining the technology roadmap, driving IP & solution development, and transitioning these technology components into practically deployable product engineering use cases.

       

      With a career spanning over 30+ years, Sujeeth Joseph is a semiconductor industry veteran in the SoC, System and Product architecture space. At SanDisk India, he was Director of Architecture for the USD $2B Removable Products Group. Simultaneously, he also headed the SanDisk India Patenting function, the Retail Competitive Analysis Group and drove academic research programs with premier Indian academic Institutes. Prior to SanDisk, he was Chief Architect of the Semiconductor & Systems BU (SnS) of Wipro Technologies. Over a 19-year career at Wipro, he has played hands-on and leadership roles across all phases of the ASIC and System design flow.

       

      He graduated in Electronics Engineering from Bombay University in 1991.

       

      SUJITH MATHEW IYPE Co-founder & CTO

      SUJITH MATHEW IYPE

      Co-founder & COO

       

      As Ignitarium's Co-founder and COO, Sujith is responsible for driving the operational efficiency and streamlining process across the organization. He is also responsible for the growth and P&L of the Semiconductor Business Unit.

       

      Apart from establishing a compelling story in VLSI, Sujith was responsible for Ignitarium's foray into nascent technology areas like AI, ML, Computer Vision, and IoT, nurturing them in our R&D Lab - "The Crucible".

       

      Prior to founding Ignitarium, Sujith played the role of a VLSI architect at Wipro Technologies for 13 years. In true hands-on mode, he has built ASICs and FPGAs for the Multimedia, Telecommunication, and Healthcare domains and has provided technical leadership for many flagship projects executed by Wipro.

       

      Sujith graduated from NIT - Calicut in the year 2000 in Electronics and Communications Engineering and thereafter he has successfully completed a one-year executive program in Business Management from IIM Calcutta.

       

      RAMESH SHANMUGHAM Co-founder & COO

      RAMESH SHANMUGHAM

      Co-founder & CRO

      As Co-founder and Chief Revenue Officer of Ignitarium, Ramesh has been responsible for global business and marketing as well as building trusted customer relationships upholding the company's core values.

      Ramesh has over 25 years of experience in the Semiconductor Industry covering all aspects of IC design. Prior to Ignitarium, Ramesh was a key member of the senior management team of the semiconductor division at Wipro Technologies. Ramesh has played key roles in Semiconductor Delivery and Pre-sales at a global level.

      Ramesh graduated in Electronics Engineering from Model Engineering College, Cochin, and has a Postgraduate degree in Microelectronics from BITS Pilani.