A container terminal
Deep Learning has provided a major boost to computer vision’s already rapidly expanding reach. A lot of new applications of computer vision technologies have been implemented with Deep Learning and are now becoming a part of our daily lives.

Automatic Container Code Recognition using Deep Learning

Business photo created by 4045 – freepik.com

Deep Learning has provided a major boost to computer vision’s already rapidly expanding reach. A lot of new applications of computer vision technologies have been implemented with Deep Learning and are now becoming a part of our daily lives. 

The shipping industry in particular has started to see the enormous benefits of this technology. As shipping and trading companies process tens of thousands of containers every day, Automatic Container ID and ISO Detection in real time is the need of the hour.

The container identification system used is an ISO format composed of a series of letters and numbers. As the terminal gates and other checkpoints handle a large number of containers, there is always a possibility that the container identification sequence has not been properly followed. Human inspection and manual recording of the container ID and ISO are likely to cause errors. They hamper the speed of operation, particularly during the customs clearance verification process, in which customs officers and terminal operators have to deal with individual containers as they enter and leave terminals. 

Being cognizant of the above operational challenges with the current manual container reading system, Ignitarium’s engineers conceptualized and developed an alternative deep-learning-based computer vision solution to automatically detect and recognize the ID and ISO of the containers. Before jumping into the key modules of this project, it will be good to look at an overview of the Container Identification System used in the industry today.

An overview of the Container Identification system:

Fig. 1. Image Credits: The Geography of Transport Systems by Jean-Paul Rodrigue

The container ID is an eleven-digit number that comprises owner code, product group code, license number, and a check digit. An additional 4 digits in the end display ISO type & size codes denoting container category and size. Each of these markings play a very important role in the transport of the container and provides valuable information to all organizations in the supply chain concerning the control and safety of the container. 

Data Preparation:

Data collection is the process of gathering and measuring information on variables of interest. In order to train a model, we need sufficient and relevant amounts of data. And labeling is also an important part of any training. The training results will yield maximum accuracy only if the data labels are correct. For our purpose, the dataset was generated by collecting several container videos and dumping the images from these videos. The labeling of containers, text regions as well as characters were done using labeling apps. A few examples of labeling apps can be found here: LabelImg and LabelMe

The key modules of the project were:

  1. Container Detection
  2. Text Detection
  3. Character Detection
  4. Character Classification

1. Container Detection:

Object detection is a computer vision technique that helps to detect the objects within an image or video. Due to its close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Numerous deep learning-based object detection frameworks are available for object detection tasks. You can get an overview of object detection algorithms using deep learning here – An overview of deep learning based object detection algorithms.

Fig. 2. Container detection

For container detection, a customized variant of the RetinaNet network is utilized. RetinaNet is a composite network which consists of a backbone network and two sub-networks. The backbone network is responsible for generating the convolutional feature maps of the image. One sub-network is responsible for generating classification results based on the output from backbone networks. And the other subnetwork is responsible for performing the regression task using the outputs from the backbone network. The pretrained weights used are from ResNet50. Here is a related post that will give a detailed explanation regarding the RetinaNet architecture.

Fig. 3. RetinaNet Architecture 

For training and evaluating a RetinaNet model, two .csv files are required. The XML files generated while labeling containers are parsed and an annotation.csv file is generated. The annotation.csv file will contain the input image location, its bounding box values, and corresponding label. <path/to/image>, <xmin>, <ymin>, <xmax>, <ymax>, <label>. The classes.csv file will contain all class labels in the dataset which are unique, along with their corresponding index values. The input to the model will be these CSV files and once training is completed, a trained weight file will be saved. For making predictions, we convert this trained model into an inference model. While testing, it will return bounding box values of containers along with their corresponding scores and labels. The boxes can be filtered out by setting up a threshold value. For visualizing the outputs OpenCV components can be utilized.

The base RetinaNet repo is available in the following link keras-retinanet

2. Text Detection:

Once the containers are detected, the text regions corresponding to ID and ISO need to be detected. Because of the size, location, lighting, and texture changes of objects in the image, text detection from images have become one of the most difficult tasks in computer vision. Out of several object detection algorithms, the semantic segmentation algorithm performs well for text detection. 

Semantic Segmentation:

Semantic segmentation is the task of understanding the semantic content in images. Semantic Segmentation has many applications, such as detecting road signs, detecting drivable areas in autonomous vehicles, etc. An overview of Keras semantic segmentation can be found at Semantic Segmentation and at A Beginner’s guide to Deep Learning based Semantic Segmentation using Keras.

   

Fig. 4. Text Detection using semantic segmentation

The semantic segmentation network follows an encoder-decoder architecture. Several pretrained models are also available. So the initial step is selecting the proper base network and segmentation network for semantic segmentation tasks. Along with choosing the required architecture for semantic segmentation, choosing the input dimension also has significance. If the input size is large it consumes more memory and training will be slower.

The mask images were generated from the annotated jsons. The feature vectors generated from the encoder will be given to the decoder model and the generated result vectors will be mapped to the original image shape using numpy functionalities. Several image processing techniques were also applied for mapping the results to the original image. The base repo is available here image-segmentation-keras.

3. Character Detection:

 For character detection, a custom RetinaNet network was utilized. The input to the system is the annotation.csv file and classes.csv file. The annotation.csv file contains the bounding box annotations for each character and their corresponding image path. While testing, the input is the detected text crops and outputs can be visualized using OpenCV functions. 

                                                                                                                                      Fig. 5. Character Detection

4. Character Classification:

For character classification, a custom CNN model was utilized. A convolutional neural network has several layers. An overview of convolutional neural networks can be found here (Convolutional Neural Networks)  and here (Understanding of Convolutional Neural Networks) . For compiling the model, several optimizers like Adam and RMSprop can be used. Different metrics can be used for model evaluation during training like validation loss, train loss, Val accuracy and more. The loss value for the optimizer can be selected depending upon the problem statement.

The input to the CNN model are the character crops from the custom RetinaNet. It can be either digit crops or alphabet crops, which can be trained individually or separately.

                                        Fig. 6. Container ID and ISO detection and classification

Accuracy: 

The success of any system can be defined as the ability to detect and classify each module correctly. Analyzing the outcomes, the custom RetinaNet network gives better results with a minimum loss of 1.4. For text detection, the semantic segmentation detects the ID and ISO with an error of 1%. Character detection is done using the same RetinaNet model and the error was 0.5. The custom CNN model is lightweight compared to other classification networks like AlexNet and gives an accuracy of 99% for character classification.

Conclusion:

Our system is designed to automatically detect and recognize the container ID and ISO which will help reduce the disadvantages of manually recording them while they enter the container terminal gates. The system will facilitate effective container management and operations at terminal gates, yard, and in the loading and unloading zones for cranes, etc. As a future scope for performance improvement, we can consider the replacement of multiple RetinaNet models with a single CRNN module to improve performance. 

2 thoughts on “Automatic Container Code Recognition using Deep Learning”

Leave a Comment

Your email address will not be published. Required fields are marked *

1 × 2 =

Scroll to Top

Human Pose Detection & Classification

Some Buildings in a city

Features:

  • Suitable for real time detection on edge devices
  • Detects human pose / key points and recognizes movement / behavior
  • Light weight deep learning models with good accuracy and performance

Target Markets:

  • Patient Monitoring in Hospitals
  • Surveillance
  • Sports/Exercise Pose Estimation
  • Retail Analytics

OCR / Pattern Recognition

Some Buildings in a city

Use cases :

  • Analog dial reading
  • Digital meter reading
  • Label recognition
  • Document OCR

Highlights :

  • Configurable for text or pattern recognition
  • Simultaneous Analog and Digital Dial reading
  • Lightweight implementation

Behavior Monitoring

Some Buildings in a city

Use cases :

  • Fall Detection
  • Social Distancing

Highlights :

  • Can define region of interest to monitor
  • Multi-subject monitoring
  • Multi-camera monitoring
  • Alarm triggers

Attire & PPE Detection

Some Buildings in a city

Use cases :

  • PPE Checks
  • Disallowed attire checks

Use cases :

  • Non-intrusive adherence checks
  • Customizable attire checks
  • Post-deployment trainable

 

Request for Video





    Real Time Color Detection​

    Use cases :

    • Machine vision applications such as color sorter or food defect detection

    Highlights :

    • Color detection algorithm with real time performance
    • Detects as close to human vison as possible including color shade discrimination
    • GPGPU based algorithm on NVIDIA CUDA and Snapdragon Adreno GPU
    • Extremely low latency (a few 10s of milliseconds) for detection
    • Portable onto different hardware platforms

    Missing Artifact Detection

    Use cases :

    • Detection of missing components during various stages of manufacturing of industrial parts
    • Examples include : missing nuts and bolts, missing ridges, missing grooves on plastic and metal blocks

    Highlights :

    • Custom neural network and algorithms to achieve high accuracy and inference speed
    • Single-pass detection of many categories of missing artifacts
    • In-field trainable neural networks with dynamic addition of new artifact categories
    • Implementation using low cost cameras and not expensive machine-vision cameras
    • Learning via the use of minimal training sets
    • Options to implement the neural network on GPU or CPU based systems

    Real Time Manufacturing Line Inspection

    Use cases :

    • Detection of defects on the surface of manufactured goods (metal, plastic, glass, food, etc.)
    • Can be integrated into the overall automated QA infrastructure on an assembly line.

    Highlights :

    • Custom neural network and algorithms to achieve high accuracy and inference speed
    • Use of consumer or industrial grade cameras
    • Requires only a few hundred images during the training phase
    • Supports incremental training of the neural network with data augmentation
    • Allows implementation on low cost GPU or CPU based platforms

    Ground Based Infrastructure analytics

    Some Buildings in a city

    Use cases :

    • Rail tracks (public transport, mining, etc.)
    • Highways
    • Tunnels

    Highlights :

    • Analysis of video and images from 2D & 3D RGB camera sensors
    • Multi sensor support (X-ray, thermal, radar, etc.)
    • Detection of anomalies in peripheral areas of core infrastructure (Ex: vegetation or stones near rail tracks)

    Aerial Analytics

    Use cases :

    • Rail track defect detection
    • Tower defect detection: Structural analysis of Power
      transmission towers
    • infrastructure mapping

    Highlights :

    • Defect detection from a distance
    • Non-intrusive
    • Automatic video capture with perfectly centered ROI
    • No manual intervention is required by a pilot for
      camera positioning

    SANJAY JAYAKUMAR

    Co-founder & CEO

     

    Founder and Managing director of Ignitarium, Sanjay has been responsible for defining Ignitarium’s core values, which encompass the organisation’s approach towards clients, partners, and all internal stakeholders, and in establishing an innovation and value-driven organisational culture.

     

    Prior to founding Ignitarium in 2012, Sanjay spent the initial 22 years of his career with the VLSI and Systems Business unit at Wipro Technologies. In his formative years, Sanjay worked in diverse engineering roles in Electronic hardware design, ASIC design, and custom library development. Sanjay later handled a flagship – multi-million dollar, 600-engineer strong – Semiconductor & Embedded account owning complete Delivery and Business responsibility.

     

    Sanjay graduated in Electronics and Communication Engineering from College of Engineering, Trivandrum, and has a Postgraduate degree in Microelectronics from BITS Pilani.

     

    Request Free Demo




      RAMESH EMANI Board Member

      RAMESH EMANI

      Board Member

      Ramesh was the Founder and CEO of Insta Health Solutions, a software products company focused on providing complete hospital and clinic management solutions for hospitals and clinics in India, the Middle East, Southeast Asia, and Africa. He raised Series A funds from Inventus Capital and then subsequently sold the company to Practo Technologies, India. Post-sale, he held the role of SVP and Head of the Insta BU for 4 years. He has now retired from full-time employment and is working as a consultant and board member.

       

      Prior to Insta, Ramesh had a 25-year-long career at Wipro Technologies where he was the President of the $1B Telecom and Product Engineering Solutions business heading a team of 19,000 people with a truly global operations footprint. Among his other key roles at Wipro, he was a member of Wipro's Corporate Executive Council and was Chief Technology Officer.

       

      Ramesh is also an Independent Board Member of eMIDs Technologies, a $100M IT services company focused on the healthcare vertical with market presence in the US and India.

       

      Ramesh holds an M-Tech in Computer Science from IIT-Kanpur.

      MALAVIKA GARIMELLA​

      General Manager - Marketing

      A professional with a 14-year track record in technology marketing, Malavika heads marketing in Ignitarium. Responsible for all branding, positioning and promotional initiatives in the company, she has collaborated with technical and business teams to further strengthen Ignitarium's positioning as a key E R&D services player in the ecosystem.

      Prior to Ignitarium, Malavika has worked in with multiple global tech startups and IT consulting companies as a marketing consultant. Earlier, she headed marketing for the Semiconductor & Systems BU at Wipro Technologies and worked at IBM in their application software division.

      Malavika completed her MBA in Marketing from SCMHRD, Pune, and holds a B.E. degree in Telecommunications from RVCE, Bengaluru.

       

      PRADEEP KUMAR LAKSHMANAN

      VP - Operations

      Pradeep comes with an overall experience of 26 years across IT services and Academia. In his previous role at Virtusa, he played the role of Delivery Leader for the Middle East geography. He has handled complex delivery projects including the transition of large engagements, account management, and setting up new delivery centers.

      Pradeep graduated in Industrial Engineering and Management, went on to secure an MBA from CUSAT, and cleared UGN Net in Management. He also had teaching stints at his alma mater, CUSAT, and other management institutes like DCSMAT. A certified P3O (Portfolio, Program & Project Management) from the Office of Government Commerce, UK, Pradeep has been recognized for key contributions in the Management domain, at his previous organizations, Wipro & Virtusa.

      In his role as the Head of Operations at Ignitarium, Pradeep leads and manages operational functions such as Resource Management, Procurement, Facilities, IT Infrastructure, and Program Management office.

       

      SONA MATHEW Director – Human Resources

      SONA MATHEW

      AVP – Human Resources

      Sona heads Human Resource functions - Employee Engagement, HR Operations and Learning & Development – at Ignitarium. Her expertise include deep and broad experience in strategic people initiatives, performance management, talent transformation, talent acquisition, people engagement & compliance in the Information Technology & Services industry.

       

      Prior to Ignitarium, Sona has had held diverse HR responsibilities at Litmus7, Cognizant and Wipro.

       

      Sona graduated in Commerce from St. Xaviers College and did her MBA in HR from PSG College of Technology.

       

      ASHWIN RAMACHANDRAN

      Vice President - Sales

      As VP of Sales, Ashwin is responsible for Ignitarium’s go-to-market strategy, business, client relationships, and customer success in the Americas. He brings in over a couple of decades of experience, mainly in the product engineering space with customers from a wide spectrum of industries, especially in the Hi-Tech/semiconductor and telecom verticals.

       

      Ashwin has worked with the likes of Wipro, GlobalLogic, and Mastek, wherein unconventional and creative business models were used to bring in non-linear revenue. He has strategically diversified, de-risked, and grown his portfolios during his sales career.

       

      Ashwin strongly believes in the customer-first approach and works to add value and enhance the experiences of our customers.

       

      AZIF SALY Director – Sales

      AZIF SALY

      Vice President – Sales & Business Development

      Azif is responsible for go-to-market strategy, business development and sales at Ignitarium. Azif has over 14 years of cross-functional experience in the semiconductor product & service spaces and has held senior positions in global client management, strategic account management and business development. An IIM-K alumnus, he has been associated with Wipro, Nokia and Sankalp in the past.

       

      Azif handled key accounts and sales process initiatives at Sankalp Semiconductors. Azif has pursued entrepreneurial interests in the past and was associated with multiple start-ups in various executive roles. His start-up was successful in raising seed funds from Nokia, India. During his tenure at Nokia, he played a key role in driving product evangelism and customer success functions for the multimedia division.

       

      At Wipro, he was involved in customer engagement with global customers in APAC and US.

       

      RAJU KUNNATH Vice President – Enterprise & Mobility

      RAJU KUNNATH

      Distinguished Engineer – Digital

      At Ignitarium, Raju's charter is to architect world class Digital solutions at the confluence of Edge, Cloud and Analytics. Raju has over 25 years of experience in the field of Telecom, Mobility and Cloud. Prior to Ignitarium, he worked at Nokia India Pvt. Ltd. and Sasken Communication Technologies in various leadership positions and was responsible for the delivery of various developer platforms and products.

       

      Raju graduated in Electronics Engineering from Model Engineering College, Cochin and has an Executive Post Graduate Program (EPGP) in Strategy and Finance from IIM Kozhikode.

       

      PRADEEP SUKUMARAN Vice President – Business Strategy & Marketing

      PRADEEP SUKUMARAN

      Vice President - Software Engineering

      Pradeep heads the Software Engineering division, with a charter to build and grow a world-beating delivery team. He is responsible for all the software functions, which includes embedded & automotive software, multimedia, and AI & Digital services

      At Ignitarium, he was previously part of the sales and marketing team with a special focus on generating a sales pipeline for Vision Intelligence products and services, working with worldwide field sales & partner ecosystems in the U.S  Europe, and APAC.

      Prior to joining Ignitarium in 2017, Pradeep was Senior Solutions Architect at Open-Silicon, an ASIC design house. At Open-Silicon, where he spent a good five years, Pradeep was responsible for Front-end, FPGA, and embedded SW business development, marketing & technical sales and also drove the IoT R&D roadmap. Pradeep started his professional career in 2000 at Sasken, where he worked for 11 years, primarily as an embedded multimedia expert, and then went on to lead the Multimedia software IP team.

      Pradeep is a graduate in Electronics & Communication from RVCE, Bangalore.

       

      SUJEET SREENIVASAN Vice President – Embedded

      SUJEET SREENIVASAN

      Vice President – Automotive Technology

       

      Sujeet is responsible for driving innovation in Automotive software, identifying Automotive technology trends and advancements, evaluating their potential impact, and development of solutions to meet the needs of our Automotive customers.

      At Ignitarium, he was previously responsible for the growth and P&L of the Embedded Business unit focusing on Multimedia, Automotive, and Platform software.

      Prior to joining Ignitarium in 2016, Sujeet has had a career spanning more than 16 years at Wipro. During this stint, he has played diverse roles from Solution Architect to Presales Lead covering various domains. His technical expertise lies in the areas of Telecom, Embedded Systems, Wireless, Networking, SoC modeling, and Automotive. He has been honored as a Distinguished Member of the Technical Staff at Wipro and has multiple patents granted in the areas of Networking and IoT Security.

      Sujeet holds a degree in Computer Science from Government Engineering College, Thrissur.

       

      RAJIN RAVIMONY Distinguished Engineer

      RAJIN RAVIMONY

      Distinguished Engineer

       

      At Ignitarium, Rajin plays the role of Distinguished Engineer for complex SoCs and systems. He's an expert in ARM-based designs having architected more than a dozen SoCs and played hands-on design roles in several tens more. His core areas of specialization include security and functional safety architecture (IEC61508 and ISO26262) of automotive systems, RTL implementation of math intensive signal processing blocks as well as design of video processing and related multimedia blocks.

       

      Prior to Ignitarium, Rajin worked at Wipro Technologies for 14 years where he held roles of architect and consultant for several VLSI designs in the automotive and consumer domains.

       

      Rajin holds an MS in Micro-electronics from BITS Pilani.

       

      SIBY ABRAHAM Executive Vice President, Strategy

      SIBY ABRAHAM

      Executive Vice President, Strategy

       

      As EVP, of Strategy at Ignitarium, Siby anchors multiple functions spanning investor community relations, business growth, technology initiatives as well and operational excellence.

       

      Siby has over 31 years of experience in the semiconductor industry. In his last role at Wipro Technologies, he headed the Semiconductor Industry Practice Group where he was responsible for business growth and engineering delivery for all of Wipro’s semiconductor customers. Prior to that, he held a vast array of crucial roles at Wipro including Chief Technologist & Vice President, CTO Office, Global Delivery Head for Product Engineering Services, Business Head of Semiconductor & Consumer Electronics, and Head of Unified Competency Framework. He was instrumental in growing Wipro’s semiconductor business to over $100 million within 5 years and turning around its Consumer Electronics business in less than 2 years. In addition, he was the Engineering Manager for Enthink Inc., a semiconductor IP-focused subsidiary of Wipro. Prior to that, Siby was the Technical Lead for several of the most prestigious system engineering projects executed by Wipro R&D.

       

      Siby has held a host of deeply impactful positions, which included representing Wipro in various World Economic Forum working groups on Industrial IOT and as a member of IEEE’s IOT Steering Committee.

       

      He completed his MTech. in Electrical Engineering (Information and Control) from IIT, Kanpur and his BTech. from NIT, Calicut

       

      SUJEETH JOSEPH Chief Product Officer

      SUJEETH JOSEPH

      Chief Technology Officer

       

      As CTO, Sujeeth is responsible for defining the technology roadmap, driving IP & solution development, and transitioning these technology components into practically deployable product engineering use cases.

       

      With a career spanning over 30+ years, Sujeeth Joseph is a semiconductor industry veteran in the SoC, System and Product architecture space. At SanDisk India, he was Director of Architecture for the USD $2B Removable Products Group. Simultaneously, he also headed the SanDisk India Patenting function, the Retail Competitive Analysis Group and drove academic research programs with premier Indian academic Institutes. Prior to SanDisk, he was Chief Architect of the Semiconductor & Systems BU (SnS) of Wipro Technologies. Over a 19-year career at Wipro, he has played hands-on and leadership roles across all phases of the ASIC and System design flow.

       

      He graduated in Electronics Engineering from Bombay University in 1991.

       

      SUJITH MATHEW IYPE Co-founder & CTO

      SUJITH MATHEW IYPE

      Co-founder & COO

       

      As Ignitarium's Co-founder and COO, Sujith is responsible for driving the operational efficiency and streamlining process across the organization. He is also responsible for the growth and P&L of the Semiconductor Business Unit.

       

      Apart from establishing a compelling story in VLSI, Sujith was responsible for Ignitarium's foray into nascent technology areas like AI, ML, Computer Vision, and IoT, nurturing them in our R&D Lab - "The Crucible".

       

      Prior to founding Ignitarium, Sujith played the role of a VLSI architect at Wipro Technologies for 13 years. In true hands-on mode, he has built ASICs and FPGAs for the Multimedia, Telecommunication, and Healthcare domains and has provided technical leadership for many flagship projects executed by Wipro.

       

      Sujith graduated from NIT - Calicut in the year 2000 in Electronics and Communications Engineering and thereafter he has successfully completed a one-year executive program in Business Management from IIM Calcutta.

       

      RAMESH SHANMUGHAM Co-founder & COO

      RAMESH SHANMUGHAM

      Co-founder & CRO

      As Co-founder and Chief Revenue Officer of Ignitarium, Ramesh has been responsible for global business and marketing as well as building trusted customer relationships upholding the company's core values.

      Ramesh has over 25 years of experience in the Semiconductor Industry covering all aspects of IC design. Prior to Ignitarium, Ramesh was a key member of the senior management team of the semiconductor division at Wipro Technologies. Ramesh has played key roles in Semiconductor Delivery and Pre-sales at a global level.

      Ramesh graduated in Electronics Engineering from Model Engineering College, Cochin, and has a Postgraduate degree in Microelectronics from BITS Pilani.